欢迎来到《四川大学学报(医学版)》

信号通路调控骨髓间充质干细胞成骨分化的研究

周陈晨 吴祖平 邹淑娟

周陈晨, 吴祖平, 邹淑娟. 信号通路调控骨髓间充质干细胞成骨分化的研究[J]. 四川大学学报(医学版), 2020, 51(6): 777-782. doi: 10.12182/20201160103
引用本文: 周陈晨, 吴祖平, 邹淑娟. 信号通路调控骨髓间充质干细胞成骨分化的研究[J]. 四川大学学报(医学版), 2020, 51(6): 777-782. doi: 10.12182/20201160103
ZHOU Chen-chen, WU Zu-ping, ZOU Shu-juan. The Study of Signal Pathway Regulating the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 777-782. doi: 10.12182/20201160103
Citation: ZHOU Chen-chen, WU Zu-ping, ZOU Shu-juan. The Study of Signal Pathway Regulating the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 777-782. doi: 10.12182/20201160103

栏目: 口腔医学进展

信号通路调控骨髓间充质干细胞成骨分化的研究

doi: 10.12182/20201160103
基金项目: 国家自然科学基金青年科学基金项目(No. 81901040)和中国博士后科学基金面上资助项目(No. 2019M653440)资助
详细信息
    通讯作者:

    E-mail:shujuanzou@aliyun.com

The Study of Signal Pathway Regulating the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

More Information
  • 摘要: 骨髓间充质干细胞的成骨分化受到多条信号通路调控,直接或间接影响矮小相关转录因子2(runt-related transcription factor 2, Runx2)和成骨细胞特异性转录因子(osterix, Osx)等成骨关键转录因子的表达,在骨的发育与再生、骨的修复重建过程中发挥了关键作用。这些通路各自发挥其作用机制,但又相互交织关联构成了一个复杂的信号调控网络,但由于研究手段的局限,成骨分化相关信号通路的具体作用机制仍不明了,若能阐明这些不同的信号通路各自发挥其作用的相关机制及各条通路之间的相互关系,对成骨分化的机制研究具有重要的意义。本文将对各种信号通路在骨髓间充质干细胞成骨分化调控研究中所取得的进展做一综述。
  • [1] PITTENGER M, MACKAY A, BECK S, et al. Multilineage potential of adult human mensenchymal stem cells. Science,1999,284: 143–147. doi: 10.1126/science.284.5411.143
    [2] CHAMBERLAIN J R, SCHWARZE U, WANG P R, et al. Gene targeting in stem cells from individuals with osteogenesis imperfect. Science,2004,303(5661): 1198–1201. doi: 10.1126/science.1088757
    [3] KANG M I, LEE W Y, OH K W, et al. The short-term changes of bone mineral metabolism following bone marrow transplantation. Bone,2000,26(3): 275–279. doi: 10.1016/S8756-3282(99)00265-3
    [4] PINSON K I, BRENNAN J, MONKLEY S, et al. An LDL-receptorrelated protein mediates Wnt signalling in mice. Nature,2000,407(769): 535–538. doi: 10.1038/35035124
    [5] DAVIDSON G, WU W, SHEN J, et al. Casein kinase 1 γcouples Wnt receptoractivation to cytoplasmic signal transduction. Nature,2005,438(7069): 867–872. doi: 10.1038/nature04170
    [6] FIDDES I T, LODEWIJK G A, MEGHAN M, et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell, 2018, 173(6): 1356–1369.e22[2020-06-08]. https://doi.org/10.1016/j.cell.2018.03.051.
    [7] PETER S M, SUSAN W. A review of Notch processing with new insights into ligand-independent Notch signaling in T-cells. Front Immunol, 2018, 9: 1230[2020-06-08]. https://doi.org/10.3389/fimmu.2018.01230.
    [8] CARBALLO G B, HONORATO J R, DE LOPES G P F, et al. A highlight on sonic Hedgehog pathway. Cell Commun Signal, 2018, 16(1): 11[2020-06-08]. https://biosignaling.biomedcentral.com/articles/10.1186/s12964-018-0220-7. doi: 10.1186/s12964-018-0220-7.
    [9] PETROV K, WIERBOWSKI B M, SALIC A. Sending and receiving Hedgehog signals. Annu Rev Cell Dev Biol,2017,33(1): 145–168. doi: 10.1146/annurev-cellbio-100616-060847
    [10] 张玲莉, 周绪昌, 吴伟. BMP-Smad信号通路在骨髓间充质干细胞分化中的作用. 中华骨质疏松和骨矿盐疾病杂志,2019,12(6): 618–626. doi: 10.3969/j.issn.1674-2591.2019.06.011
    [11] 安小宁. PNS介导BMP-Smad信号通路调控BMSCs成骨分化的机制研究. 南宁: 广西医科大学, 2019.
    [12] YAMASHIRO T, ZHENG L, SHITAKU Y, et al. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation,2007,75(5): 452–462. doi: 10.1111/j.1432-0436.2006.00150.x
    [13] YANG J, WANG S K, CHOI M, et al. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol Genet Genomic Med,2015,3(1): 40–58. doi: 10.1002/mgg3.111
    [14] SASAKI K, HITORA T, NAKAMURA O, et al. The role of MAPK pathway in bone and soft tissue tumors. Anticancer Res,2011,31(2): 549–553.
    [15] BONNI A, BRUNET A, WEST A E, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science,1999,286(5443): 1358–1362. doi: 10.1126/science.286.5443.1358
    [16] ITOH N, ORNITZ D M. Evolution of the FGF and FGFR gene families. Trends Genet,2004,20(11): 563–569. doi: 10.1016/j.tig.2004.08.007
    [17] ORNITZ D M, MARIE P J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev,2002,16(12): 1446–1465. doi: 10.1101/gad.990702
    [18] WOODS A, WANG G, BEIER F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem,2005,280(12): 11626–11634. doi: 10.1074/jbc.M409158200
    [19] MCBEATH R, PIRONE D M, NELSON C M, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell,2004,6(4): 483–495. doi: 10.1016/S1534-5807(04)00075-9
    [20] ONGARO A, PELLATI A, BAGHERI L, et al. Characterization of Notch signaling during osteogenic differentiation in human osteosarcoma Cell Line MG63. J Cell Physiol,2016,231(12): 2652–2663. doi: 10.1002/jcp.25366
    [21] CAO J, WEI Y, LIAN J, et al. Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int J Mol Med,2017,40(2): 378–388. doi: 10.3892/ijmm.2017.3037
    [22] JI Y, KE Y, GAO S. Intermittent activation of notch signaling promotes bone formation. Am J Transl Res,2017,9(6): 2933–2944.
    [23] TEZUKA K I, YASUDA M, WATANABE N, et al. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res,2002,17(2): 231–239. doi: 10.1359/jbmr.2002.17.2.231
    [24] 任磊, 代光明, 林枭, 等. 骨细胞Wnt/β-Catenin通过Notch信号促进BMSCs成骨分化. 中国骨质疏松杂志,2018,24(5): 45–50.
    [25] DEREGOWSKI V, GAZZERRO E, PRIEST L, et al. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/β-Catenin but not bone morphogenetic protein signaling. J Biol Chem,2006,281(10): 6203–6210. doi: 10.1074/jbc.M508370200
    [26] WENG A P, FERRANDO A A, LEE W, et al. Activating mutations of Notch1 in human T cell acute lymphoblastic leukemia. Science,2004,306(5694): 269–271. doi: 10.1126/science.1102160
    [27] CUADRADO A, NEBREDA A R. Mechanisms and functions of p38 MAPK signalling. Biochem J,2010,429(3): 403–417. doi: 10.1042/BJ20100323
    [28] BIANCHI E N, FERRARI S L. Beta-arrestin2 regulates para-thyroid hormone effects on a p38 MAPK and NFkappaB gene expression network in osteoblasts. Bone,2009,45(4): 716–725. doi: 10.1016/j.bone.2009.06.020
    [29] NOTH U, TULI R, SEGHATOLESLAMI R, et al. Activationof p38 and Smads mediates BMP-2 effects on human trabecular bone-derived osteoblasts. Exp Cell Res,2003,291(1): 201–211. doi: 10.1016/S0014-4827(03)00386-0
    [30] NÜSSLEIN-VOLHARD C, WIESCHAUS E. Mutations affecting segment number and polarity in drosophila. Nature,1980,287(5785): 795–801. doi: 10.1038/287795a0
    [31] TIDYMAN W E, RAUEN K A. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Gene Dev,2009,19(3): 230–236. doi: 10.1016/j.gde.2009.04.001
    [32] 杨敏, 黄凌云, 吕泽平, 等. MAPK信号通路在力学刺激对MG-63成骨样细胞护骨素表达中的作用. 中华骨质疏松和骨矿盐疾病杂志,2019,12(1): 58–64. doi: 10.3969/j.issn.1674-2591.2019.01.008
    [33] PENGJAM Y, MADHYASTHA H, MADHYASTHA R, et al. Anthraquinone glycoside aloin induces osteogenic initiation of MC3T3-E1 cells: involvement of MAPK mediated Wnt and Bmp signaling. Biomol Ther (Seoul),2016,24(2): 123–131. doi: 10.4062/biomolther.2015.106
    [34] HUANG Y F, LIN J J, LIN C H, et al. c-Jun N-terminal kinase 1 negatively regulates osteoblastic differentiation induced by BMP2 via phosphorylation of Runx2 at Ser104. J Bone Mine Res,2012,27(5): 1093–1105. doi: 10.1002/jbmr.1548
    [35] MATSUSHITA T, CHAN Y Y, KAWANAMI A, et al. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol,2009,29(21): 5843–5857. doi: 10.1128/MCB.01549-08
    [36] XIAO G, JIANG D, THOMAS P, et al. MAPK pathwaysactivate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem,2000,275(6): 4453–4459. doi: 10.1074/jbc.275.6.4453
    [37] LIU L S, LU J Q, LI X L. The LIS1/NDE1 complex is essential for FGF signaling by regulating FGF receptor intracellular trafficking. Cell Rep,2018,22(12): 3277–3291. doi: 10.1016/j.celrep.2018.02.077
    [38] MARUYAMA T, MIRANDO A J, DENG C X, et al. The balance of WNT and FGF signaling influences mesenchymal stem cell fateduring skeletal development. Sci Signal, 2010, 3(123): ra40[2020-06-08]. https://stke.sciencemag.org/content/3/123/ra40.long. doi: 10.1126/scisignal.2000727.
    [39] WU M, CHEN G, LI Y P. TGF-β and BMP signaling inosteoblast, keletal development, and bone formation, homeostasis and disease. Bone Res, 2016, 4: 16009[2020-06-08]. https://www.nature.com/articles/boneres20169. doi: 10.1038/boneres.2016.9.
    [40] JIANG T, GE S, SHIM Y H, et al. Bone morphogenetic protein is required for fibroblast growth factor 2-dependent later-stage osteoblastic differentiation in cranial suture cells. Int J Clin Exp Pathol,2015,8(3): 2946–2954.
    [41] 陈冬磊, 刘智任, 陈贵妙, 等. 牙齿发育与FGF信号通路的关系. 现代生物医学进展,2012,12(15): 2981–2983.
    [42] LIU A J, LING F, WANG D, et al. Fasudil inhibits platelet-derived growth factor-induced human pulmonary artery smooth muscle cell proliferation by up-regulation of p27kip via the ERK signal pathway. Chin Med J (Engl),2011,125(19): 3098–3104.
    [43] CHEN Z, WANG X, SHAO Y, et al. Synthetic osteogenic growth peptide promotes differentiation of human bone marrow mesenchymal stem cells to osteoblasts via RhoA/ROCK pathway. Mol Cell Biochem,2011,358(1/2): 221–227. doi: 10.1007/s11010-011-0938-7
    [44] XU T, WU M, FENG J, et al. RhoA/Rho kinase signaling regulates transforming growth factor-betal-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Small pathway. Int J Mol Med,2012,30(5): 1119–1125. doi: 10.3892/ijmm.2012.1107
    [45] MULLIN B H, MAMOTTE C, PRINCE R L, et al. Influence of ARHGEF3 and RHOA knockdown on ACTA2 and other genes in osteoblasts and osteoclasts. PLoS One, 2014, 9(5): e98116[2020-06-08]. https://doi.org/10.1371/journal.pone.0098116.
    [46] KIM M J, KIM S, KIM Y, et al. Inhibition of RhoA/Rock induces chondrogenesis of chick limb menchymal cells. Biochem Biophy Res Commun,2012,418(3): 500–555. doi: 10.1016/j.bbrc.2012.01.053
    [47] LIANG J, FENG J, WU W K, et al. Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway. J Ortho Res,2011,29(3): 369–374. doi: 10.1002/jor.21257
    [48] TROMPOUKI E, BOWMAN T V, LAWTON L N, et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell,2011,147(3): 577–589. doi: 10.1016/j.cell.2011.09.044
    [49] CHOI D S, STARK D J, RAPHAEL R M, et al. SDF-1α stiffens myeloma bone marrow mesenchymal stromal cells through the activation of RhoA-ROCK-Myosin II. Int J Cancer,2015,136(5): E219–E229. doi: 10.1002/ijc.29145
    [50] 尹定子, 宋海云. Wnt信号通路:调控机理和生物学意义. 中国细胞生物学学报,2011,33(2): 103–111.
    [51] CHEN X J, GAO Y H. Research progress of Wnt signaling pathway in regulating osteogenic differentiation of mesenchymal. Stem Cells,2013,33(1): 99–103.
    [52] DAY T F, GUO X, GARRETT-BEAL L, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell,2005,8(5): 739–750. doi: 10.1016/j.devcel.2005.03.016
    [53] REGARD J B, CHERMAN N, PALMER D, et al. WNT/Beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci U S A,2011,108(50): 20101–20106. doi: 10.1073/pnas.1114656108
    [54] RODDA S J, MCMAHON A P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development,2006,133(16): 3231–3244. doi: 10.1242/dev.02480
    [55] MATZELLE M M, SHAW A T, BAUM R, et al. Inflammation in arthritis induces expression of BMP3, an inhibitor of bone formation. Scand J Rheumatol,2016,45(5): 379–383. doi: 10.3109/03009742.2015.1126347
    [56] MCLARREN K W, LO R, GRBAVEC D, et al. The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J Biol Chem,2000,275(1): 530–538. doi: 10.1074/jbc.275.1.530
    [57] TESSER A, CARVALHO L M D, SANDRIN-GARCIA P, et al. Higher interferon score and normal complement levels may identify a distinct clinical subset in children with systemic lupus erythematosus. Arthritis Res Ther, 2020, 22(1): 91[2020-06-08]. https://www.researchgate.net/publication/340928345_Higher_interferon_score_and_normal_complement_levels_may_identify_a_distinct_clinical_subset_in_children_with_systemic_lupus_erythematosus. doi: 10.1186/s13075-020-02161-8.
    [58] OHBA S. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev Cell,2008,14(5): 689–699. doi: 10.1016/j.devcel.2008.03.007
    [59] YOSHIAKI K, HIRONORI H, YUSKE K, et al. Gli1 haploinsufficiency leads to decreased bone mass with an uncoupling of bone metabolism in adult mice. PLoS One, 2014, 9(10): e109597[2020-06-08]. https://doi.org/10.1371/journal.pone.0109597.
    [60] TIAN Y, XU Y, FU Q, et al. Osterix is required for sonic Hedgehog-induced osteoblastic MC3T3-E1 cell differentiation. Cell Biochem Biophy,2012,64: 169–176. doi: 10.1007/s12013-012-9369-7
    [61] AMANO K, DENSMORE M, FAN Y, et al. Ihh and PTH1R signaling in limb mesenchyme is required for proper segmentation and subsequent formation and growth of digit bones. Bone,2016,83: 256–266. doi: 10.1016/j.bone.2015.11.017
    [62] PETROVA R, JOYNER A L. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development,2014,141: 3445–3457. doi: 10.1242/dev.083691
    [63] ZOU S, CHEN T, WANG Y, et al. Mesenchymal stem cells overexpressing Ihh promote bone repair. J Orthop Surg Res, 2014, 9: 102[2020-06-08]. https://doi.org/10.1186/s13018-014-0102-7.
  • 加载中
计量
  • 文章访问数:  1981
  • HTML全文浏览量:  808
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-10-30
  • 刊出日期:  2020-11-20

目录

    /

    返回文章
    返回