Volume 51 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
ZHOU Chen-chen, WU Zu-ping, ZOU Shu-juan. The Study of Signal Pathway Regulating the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 777-782. doi: 10.12182/20201160103
Citation: ZHOU Chen-chen, WU Zu-ping, ZOU Shu-juan. The Study of Signal Pathway Regulating the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 777-782. doi: 10.12182/20201160103

The Study of Signal Pathway Regulating the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

doi: 10.12182/20201160103
More Information
  • Corresponding author: E-mail: shujuanzou@aliyun.com
  • Received Date: 2020-06-18
  • Rev Recd Date: 2020-10-30
  • Publish Date: 2020-11-20
  • Osteogenesis of mesenchymal stem cells to differentiate between bone marrow by multiple signaling pathways that control, directly or indirectly affect small related transcription factor 2 (runt-related transcription factor 2, Runx2) and osteoblast specific transcription factor (osterix, Osx), the expression of osteogenesis key transcription factors, such as in the development and regeneration of the bone, bone repair has played a key role in the process of reconstruction. These pathways play their mechanism of action, but also intertwined associated constitute a complex signal transduction network, but due to the limitations of research methods, the osteogenic differentiation related signaling pathways of the specific mechanism is still unclear, if you can clarify these different signaling pathways play to the role of their relevant mechanism and the relationship between various pathways and the mechanism study of osteogenesis differentiation is of great importance. This article will review the progress of various signaling pathways in the regulation of osteogenic differentiation of bone marrow mesenchymal stem cells.
  • loading
  • [1]
    PITTENGER M, MACKAY A, BECK S, et al. Multilineage potential of adult human mensenchymal stem cells. Science,1999,284: 143–147. doi: 10.1126/science.284.5411.143
    CHAMBERLAIN J R, SCHWARZE U, WANG P R, et al. Gene targeting in stem cells from individuals with osteogenesis imperfect. Science,2004,303(5661): 1198–1201. doi: 10.1126/science.1088757
    KANG M I, LEE W Y, OH K W, et al. The short-term changes of bone mineral metabolism following bone marrow transplantation. Bone,2000,26(3): 275–279. doi: 10.1016/S8756-3282(99)00265-3
    PINSON K I, BRENNAN J, MONKLEY S, et al. An LDL-receptorrelated protein mediates Wnt signalling in mice. Nature,2000,407(769): 535–538. doi: 10.1038/35035124
    DAVIDSON G, WU W, SHEN J, et al. Casein kinase 1 γcouples Wnt receptoractivation to cytoplasmic signal transduction. Nature,2005,438(7069): 867–872. doi: 10.1038/nature04170
    FIDDES I T, LODEWIJK G A, MEGHAN M, et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell, 2018, 173(6): 1356–1369.e22[2020-06-08]. https://doi.org/10.1016/j.cell.2018.03.051.
    PETER S M, SUSAN W. A review of Notch processing with new insights into ligand-independent Notch signaling in T-cells. Front Immunol, 2018, 9: 1230[2020-06-08]. https://doi.org/10.3389/fimmu.2018.01230.
    CARBALLO G B, HONORATO J R, DE LOPES G P F, et al. A highlight on sonic Hedgehog pathway. Cell Commun Signal, 2018, 16(1): 11[2020-06-08]. https://biosignaling.biomedcentral.com/articles/10.1186/s12964-018-0220-7. doi: 10.1186/s12964-018-0220-7.
    PETROV K, WIERBOWSKI B M, SALIC A. Sending and receiving Hedgehog signals. Annu Rev Cell Dev Biol,2017,33(1): 145–168. doi: 10.1146/annurev-cellbio-100616-060847
    张玲莉, 周绪昌, 吴伟. BMP-Smad信号通路在骨髓间充质干细胞分化中的作用. 中华骨质疏松和骨矿盐疾病杂志,2019,12(6): 618–626. doi: 10.3969/j.issn.1674-2591.2019.06.011
    安小宁. PNS介导BMP-Smad信号通路调控BMSCs成骨分化的机制研究. 南宁: 广西医科大学, 2019.
    YAMASHIRO T, ZHENG L, SHITAKU Y, et al. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation,2007,75(5): 452–462. doi: 10.1111/j.1432-0436.2006.00150.x
    YANG J, WANG S K, CHOI M, et al. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol Genet Genomic Med,2015,3(1): 40–58. doi: 10.1002/mgg3.111
    SASAKI K, HITORA T, NAKAMURA O, et al. The role of MAPK pathway in bone and soft tissue tumors. Anticancer Res,2011,31(2): 549–553.
    BONNI A, BRUNET A, WEST A E, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science,1999,286(5443): 1358–1362. doi: 10.1126/science.286.5443.1358
    ITOH N, ORNITZ D M. Evolution of the FGF and FGFR gene families. Trends Genet,2004,20(11): 563–569. doi: 10.1016/j.tig.2004.08.007
    ORNITZ D M, MARIE P J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev,2002,16(12): 1446–1465. doi: 10.1101/gad.990702
    WOODS A, WANG G, BEIER F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem,2005,280(12): 11626–11634. doi: 10.1074/jbc.M409158200
    MCBEATH R, PIRONE D M, NELSON C M, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell,2004,6(4): 483–495. doi: 10.1016/S1534-5807(04)00075-9
    ONGARO A, PELLATI A, BAGHERI L, et al. Characterization of Notch signaling during osteogenic differentiation in human osteosarcoma Cell Line MG63. J Cell Physiol,2016,231(12): 2652–2663. doi: 10.1002/jcp.25366
    CAO J, WEI Y, LIAN J, et al. Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int J Mol Med,2017,40(2): 378–388. doi: 10.3892/ijmm.2017.3037
    JI Y, KE Y, GAO S. Intermittent activation of notch signaling promotes bone formation. Am J Transl Res,2017,9(6): 2933–2944.
    TEZUKA K I, YASUDA M, WATANABE N, et al. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res,2002,17(2): 231–239. doi: 10.1359/jbmr.2002.17.2.231
    任磊, 代光明, 林枭, 等. 骨细胞Wnt/β-Catenin通过Notch信号促进BMSCs成骨分化. 中国骨质疏松杂志,2018,24(5): 45–50.
    DEREGOWSKI V, GAZZERRO E, PRIEST L, et al. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/β-Catenin but not bone morphogenetic protein signaling. J Biol Chem,2006,281(10): 6203–6210. doi: 10.1074/jbc.M508370200
    WENG A P, FERRANDO A A, LEE W, et al. Activating mutations of Notch1 in human T cell acute lymphoblastic leukemia. Science,2004,306(5694): 269–271. doi: 10.1126/science.1102160
    CUADRADO A, NEBREDA A R. Mechanisms and functions of p38 MAPK signalling. Biochem J,2010,429(3): 403–417. doi: 10.1042/BJ20100323
    BIANCHI E N, FERRARI S L. Beta-arrestin2 regulates para-thyroid hormone effects on a p38 MAPK and NFkappaB gene expression network in osteoblasts. Bone,2009,45(4): 716–725. doi: 10.1016/j.bone.2009.06.020
    NOTH U, TULI R, SEGHATOLESLAMI R, et al. Activationof p38 and Smads mediates BMP-2 effects on human trabecular bone-derived osteoblasts. Exp Cell Res,2003,291(1): 201–211. doi: 10.1016/S0014-4827(03)00386-0
    NÜSSLEIN-VOLHARD C, WIESCHAUS E. Mutations affecting segment number and polarity in drosophila. Nature,1980,287(5785): 795–801. doi: 10.1038/287795a0
    TIDYMAN W E, RAUEN K A. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Gene Dev,2009,19(3): 230–236. doi: 10.1016/j.gde.2009.04.001
    杨敏, 黄凌云, 吕泽平, 等. MAPK信号通路在力学刺激对MG-63成骨样细胞护骨素表达中的作用. 中华骨质疏松和骨矿盐疾病杂志,2019,12(1): 58–64. doi: 10.3969/j.issn.1674-2591.2019.01.008
    PENGJAM Y, MADHYASTHA H, MADHYASTHA R, et al. Anthraquinone glycoside aloin induces osteogenic initiation of MC3T3-E1 cells: involvement of MAPK mediated Wnt and Bmp signaling. Biomol Ther (Seoul),2016,24(2): 123–131. doi: 10.4062/biomolther.2015.106
    HUANG Y F, LIN J J, LIN C H, et al. c-Jun N-terminal kinase 1 negatively regulates osteoblastic differentiation induced by BMP2 via phosphorylation of Runx2 at Ser104. J Bone Mine Res,2012,27(5): 1093–1105. doi: 10.1002/jbmr.1548
    MATSUSHITA T, CHAN Y Y, KAWANAMI A, et al. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol,2009,29(21): 5843–5857. doi: 10.1128/MCB.01549-08
    XIAO G, JIANG D, THOMAS P, et al. MAPK pathwaysactivate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem,2000,275(6): 4453–4459. doi: 10.1074/jbc.275.6.4453
    LIU L S, LU J Q, LI X L. The LIS1/NDE1 complex is essential for FGF signaling by regulating FGF receptor intracellular trafficking. Cell Rep,2018,22(12): 3277–3291. doi: 10.1016/j.celrep.2018.02.077
    MARUYAMA T, MIRANDO A J, DENG C X, et al. The balance of WNT and FGF signaling influences mesenchymal stem cell fateduring skeletal development. Sci Signal, 2010, 3(123): ra40[2020-06-08]. https://stke.sciencemag.org/content/3/123/ra40.long. doi: 10.1126/scisignal.2000727.
    WU M, CHEN G, LI Y P. TGF-β and BMP signaling inosteoblast, keletal development, and bone formation, homeostasis and disease. Bone Res, 2016, 4: 16009[2020-06-08]. https://www.nature.com/articles/boneres20169. doi: 10.1038/boneres.2016.9.
    JIANG T, GE S, SHIM Y H, et al. Bone morphogenetic protein is required for fibroblast growth factor 2-dependent later-stage osteoblastic differentiation in cranial suture cells. Int J Clin Exp Pathol,2015,8(3): 2946–2954.
    陈冬磊, 刘智任, 陈贵妙, 等. 牙齿发育与FGF信号通路的关系. 现代生物医学进展,2012,12(15): 2981–2983.
    LIU A J, LING F, WANG D, et al. Fasudil inhibits platelet-derived growth factor-induced human pulmonary artery smooth muscle cell proliferation by up-regulation of p27kip via the ERK signal pathway. Chin Med J (Engl),2011,125(19): 3098–3104.
    CHEN Z, WANG X, SHAO Y, et al. Synthetic osteogenic growth peptide promotes differentiation of human bone marrow mesenchymal stem cells to osteoblasts via RhoA/ROCK pathway. Mol Cell Biochem,2011,358(1/2): 221–227. doi: 10.1007/s11010-011-0938-7
    XU T, WU M, FENG J, et al. RhoA/Rho kinase signaling regulates transforming growth factor-betal-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Small pathway. Int J Mol Med,2012,30(5): 1119–1125. doi: 10.3892/ijmm.2012.1107
    MULLIN B H, MAMOTTE C, PRINCE R L, et al. Influence of ARHGEF3 and RHOA knockdown on ACTA2 and other genes in osteoblasts and osteoclasts. PLoS One, 2014, 9(5): e98116[2020-06-08]. https://doi.org/10.1371/journal.pone.0098116.
    KIM M J, KIM S, KIM Y, et al. Inhibition of RhoA/Rock induces chondrogenesis of chick limb menchymal cells. Biochem Biophy Res Commun,2012,418(3): 500–555. doi: 10.1016/j.bbrc.2012.01.053
    LIANG J, FENG J, WU W K, et al. Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway. J Ortho Res,2011,29(3): 369–374. doi: 10.1002/jor.21257
    TROMPOUKI E, BOWMAN T V, LAWTON L N, et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell,2011,147(3): 577–589. doi: 10.1016/j.cell.2011.09.044
    CHOI D S, STARK D J, RAPHAEL R M, et al. SDF-1α stiffens myeloma bone marrow mesenchymal stromal cells through the activation of RhoA-ROCK-Myosin II. Int J Cancer,2015,136(5): E219–E229. doi: 10.1002/ijc.29145
    尹定子, 宋海云. Wnt信号通路:调控机理和生物学意义. 中国细胞生物学学报,2011,33(2): 103–111.
    CHEN X J, GAO Y H. Research progress of Wnt signaling pathway in regulating osteogenic differentiation of mesenchymal. Stem Cells,2013,33(1): 99–103.
    DAY T F, GUO X, GARRETT-BEAL L, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell,2005,8(5): 739–750. doi: 10.1016/j.devcel.2005.03.016
    REGARD J B, CHERMAN N, PALMER D, et al. WNT/Beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci U S A,2011,108(50): 20101–20106. doi: 10.1073/pnas.1114656108
    RODDA S J, MCMAHON A P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development,2006,133(16): 3231–3244. doi: 10.1242/dev.02480
    MATZELLE M M, SHAW A T, BAUM R, et al. Inflammation in arthritis induces expression of BMP3, an inhibitor of bone formation. Scand J Rheumatol,2016,45(5): 379–383. doi: 10.3109/03009742.2015.1126347
    MCLARREN K W, LO R, GRBAVEC D, et al. The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J Biol Chem,2000,275(1): 530–538. doi: 10.1074/jbc.275.1.530
    TESSER A, CARVALHO L M D, SANDRIN-GARCIA P, et al. Higher interferon score and normal complement levels may identify a distinct clinical subset in children with systemic lupus erythematosus. Arthritis Res Ther, 2020, 22(1): 91[2020-06-08]. https://www.researchgate.net/publication/340928345_Higher_interferon_score_and_normal_complement_levels_may_identify_a_distinct_clinical_subset_in_children_with_systemic_lupus_erythematosus. doi: 10.1186/s13075-020-02161-8.
    OHBA S. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev Cell,2008,14(5): 689–699. doi: 10.1016/j.devcel.2008.03.007
    YOSHIAKI K, HIRONORI H, YUSKE K, et al. Gli1 haploinsufficiency leads to decreased bone mass with an uncoupling of bone metabolism in adult mice. PLoS One, 2014, 9(10): e109597[2020-06-08]. https://doi.org/10.1371/journal.pone.0109597.
    TIAN Y, XU Y, FU Q, et al. Osterix is required for sonic Hedgehog-induced osteoblastic MC3T3-E1 cell differentiation. Cell Biochem Biophy,2012,64: 169–176. doi: 10.1007/s12013-012-9369-7
    AMANO K, DENSMORE M, FAN Y, et al. Ihh and PTH1R signaling in limb mesenchyme is required for proper segmentation and subsequent formation and growth of digit bones. Bone,2016,83: 256–266. doi: 10.1016/j.bone.2015.11.017
    PETROVA R, JOYNER A L. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development,2014,141: 3445–3457. doi: 10.1242/dev.083691
    ZOU S, CHEN T, WANG Y, et al. Mesenchymal stem cells overexpressing Ihh promote bone repair. J Orthop Surg Res, 2014, 9: 102[2020-06-08]. https://doi.org/10.1186/s13018-014-0102-7.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1981) PDF downloads(94) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint