干扰 UCA1 及抑制 miR-185-5p 对非小细胞肺癌 β-Catenin
通路的活化、自噬和存活影响

杨 雁1, 刘行仁1, 金 钧2△

1. 四川省医学科学院·四川省人民医院 呼吸与危重症医学科（成都 610072）; 2. 成都中医药大学基础医学院（成都 611137）

【摘要】 目的 探究在非小细胞肺癌中，长链非编码 RNA(long non-coding RNA, lncRNA)尿路上皮癌相关 1 (urothelial carcinoma associated 1, UCA1) 稀释 miR-185-5p 对 β-Catenin 通路的影响。方法 选取非小细胞肺癌 A549 细胞为研究材料，设置 A549 空白对照组、sh-scramble 阴性对照组、sh-UCA1 干扰组、miR-185 inhibitor 组和 sh-UCA1 + inhibitor 组。Western blot 验证体系中增殖、凋亡和自噬相关分子表达，qRT-PCR 鉴定体系中 lncRNA UCA1 和 miR-185-5p 之间的结合。结果 BrdU 染色鉴定细胞增殖、免疫荧光染色检测细胞中 LC3+ 细胞含量。结果 在 A549 细胞中，lncRNA UCA1 干扰后 UCA1 表达量显著下降并促进 miR-185-5p 表达，有效抑制肺癌细胞增殖和自噬，促进细胞凋亡 (P<0.01); 经生物信息学和双荧光素酶报告系统验证 lncRNA UCA1 和 miR-185-5p 有较强结合性; 进一步验证 lncRNA UCA1 可有效抑制 β-Catenin/TCF-4 及 Beclin 1 和 LC3 II 表达，降低 miR-185-5p 对肺癌细胞增殖和自噬效果，减少细胞中 LC3 含量 (P<0.01)。结论 lncRNA UCA1 干扰后，可以有效降低 UCA1 对 miR-185-5p 的抑制效果，进而解除 β-Catenin/TCF-4，Beclin 1 和 LC3 II 受到的抑制作用，从而减少肺癌细胞自噬发生和减缓增殖。

【关键词】 长链非编码 RNA UCA1 miR-185-5p A549 肺癌细胞 β-Catenin

Effects of Interference with UCA1 and Inhibition of miR-185-5p on Activation, Autophagy and Survival of β-Catenin Pathway in Non-small Cell Lung Cancer

【Abstract】 Objective To investigate the effect on β-Catenin pathway by lncRNA urothelial carcinoma associated 1 (UCA1) targeting regulated miR-185-5p in human lung adenocarcinoma A549 cell line. Methods A549 cell was selected as the study model and were divided into four groups, blank control group, sh-scramble control group (sh-scramble), sh-UCA1 interference group (sh-UCA1), miR-185 inhibitor group (miR-185 inhibitor) and sh-UCA1 + inhibitor group (sh-UCA1 + inhibitor). The proliferation-, apoptosis- and autophagy-related protein levels were determined by Western blot. qRT-PCR was employed to detect the mRNA levels of UCA1 and miR-185-5p. The relationship between lncRNA UCA1 and miR-185-5p was validated by bioinformatics analysis and luciferase reporter system assays. BrdU staining was used to detect the cell growth, and immunofluorescence staining was performed to measure the content of LC3+ cells. Results sh-UCA1 significantly decreased UCA1 expression and increased miR-185-5p expression in A549 cells, and inhibited the cell growth and autophagy, while promoted the cell apoptosis (P<0.01). Bioinformatics analysis and luciferase reporter system assays demonstrated that lncRNA UCA1 and miR-185-5 can combine effectively, indicating that they have a targeting relationship. sh-UCA1 also significantly inhibited the protein levels of β-Catenin/TCF-4, Beclin 1 and LC3 II, and decreased the cell growth and autophagy by the miR-185-5p and down-regulated the LC3 expression (P<0.01). Conclusion The effect of UCA1 inhibition for miR-185-5p was decreased by lncRNA UCA1 interference, and released the β-Catenin/TCF-4, Beclin 1 and LC3 II, and further reduced the autophagy and growth in A549 cells.

【Key words】 LncRNA UCA1 miR-185-5p A549 cells β-Catenin

肺癌作为全球第一大癌症，每年有 1800 万新发病例，已经占到所有癌症的 13%。非小细胞肺癌 (non-small cell lung cancer, NSCLC) 是一类高转移性肿瘤，约占肺癌总数的 85%；NSCLC 对化疗
药物不敏感，预后效果差[2]。有研究发现在肺癌中有一条链非编码 RNA (long noncoding RNA, LncRNA)。表达较早异常，利用高通量测序手段进一步揭示其作用机制。近年来，LncRNAs 与 miRNA/的相互作用逐渐受到人们重视，如《顺达肝癌 1(urolith carcinoma associated 1, UCA1) LncRNA 是人类尿路上皮癌细胞中发现的一类非编码 RNA，可以通过靶向特定的 miRNA 来影响尿路上皮癌体图发展[3]。已有研究证明，UCA1 表达量与膀脱癌发展预后密切相关，UCA1 在膀胱癌中，可以通过抑制 miR-193a-3p 降低活性自免基，促进线体糖酵解和谷氨酸代谢途径，最终促进癌细胞增殖[4]。此外，UCA1 在 NSCLC 中也异常高表达，可以通过上调 miR-193a-3p 来靶向 ERBB4 分子促进癌细胞恶性增生，并伴随着不良预后[5]。本研究利用非小细胞肺癌细胞系 A549 为载体，针对癌细胞中可能对细胞命运产生影响的 LncRNAs 进行深入探究，期望为肺癌治疗提供新的研究成果和治疗靶点。

1 材料与方法

1.1 实验材料

1.1.1 细胞与载体 A549 肺癌细胞系购自国家实验细胞资源共享服务平台（资源号：C111C0001CC000002）。pC-DNA 购自 Addgene 公司（货号：#61810）。sh-scramble、sh-UCA1 以及 LncRNA UCA1 突变序列均由苏州金唯智生物科技有限公司设计并合成。对相应的 LncRNA UCA1 及其突变序列利用酶切位点插入 pC-DNA 稳质粒构编码完整质粒，并转入大肠杆菌 E. Coli 中进行扩增。miR-185 抑制剂购自广州锐博生物科技有限公司。

1.1.2 主要试剂 Hoechst 33342 染色试剂盒（货号：ab228551）购自 Abcam 公司。DMEM 细胞培养液、胎牛血清和胰酶均购自美国 Gibco 公司。转染试剂盒 lipofectamine3000（货号：L3000008）购自 Thermo 公司。荧光素酶报告基因检测试剂盒（货号：RG005-1）购自碧云天公司。Ki67（货号：ab16667），Caspase-3（货号：ab13847），Beclin 1（货号：ab207612），p62（货号：ab56416），LC3A/B（货号：ab128025），β-Catenin（货号：ab32572），TCF-4（货号：ab185736），BrdU（货号：ab8955），GAPDH（货号：1056）一抗购自美国 Abcam 公司，HRP 标记的山羊抗小鼠二抗购自美国 Santa Cruz 公司。

SYBR PCR Master Mix（货号：4309155）购自赛默飞公司。

1.1.3 主要仪器 PCR 仪，电泳仪及半干转膜仪器均购自美国伯乐公司。Gel View 6000 化学发光凝胶成像系统购自广州云星仪器有限公司。Multiskan GO 酶标仪购自 Thermo。

1.2 实验方法

1.2.1 分组及处理 1. 设置 A549 空白对照组、sh-scramble 阴性对照组、sh-UCA1 干扰组、miR-185 inhibitor 组和 sh-UCA1 + inhibitor 组。sh-scramble 阴性对照组转染空载 sh-scramble 质粒；sh-UCA1 干扰组转染 sh-UCA1 质粒；miR-185 inhibitor 组转染 miR-185 inhibitor 质粒；sh-UCA1 + inhibitor 组同时转染 sh-UCA1 和 miR-185 inhibitor 质粒。

1.2.2 瞬时转染 A549 细胞系 肺癌细胞培养基 24 h 后换液，使用 lipofectamine3000（μL）：待转核酸（μg）= 4：1 进行转染液配置，混匀后室温静置半小时后加入已经更换新鲜培养液的细胞中。转染 48 h 后收集细胞待用。

1.2.3 qRT-PCR 检测 A549 细胞中相关 RNA 水平 取转染后的肺癌细胞，待细胞处于对数生长期时，用 TRIzol 试剂提取各组细胞总 RNA，测定 RNA 浓度，纯度后，用反转录试剂盒合成 cDNA，用 PCR 仪进行扩增，用 SYBR PCR Master Mix 试剂盒对 UCA1 和 miR-185-5p 表达水平进行检测，以 GAPDH 为内参。实验所用引物均采用 Primer 3 Plus 网站设计，由苏州金唯智生物科技有限公司合成提供合成。实验重复 3 次。

1.2.4 BrdU 检测细胞增殖 取经转染过的对数生长期肺癌 A549 细胞系对 6 孔细胞板上进行铺板，1×10^5/孔。加入 BrdU，37 ℃孵育 40 min；弃培养液，培养板用 PBS 洗涤 3 次，甲醇固定 10 min；经过空气干燥，0.3% H2O2-甲醇 30 min 灭活内源性氧化酶；5% 糖免液封闭；甲酸 100 ℃，5 min 变性核酸；冰浴冷却后 PBS 洗涤，加一抗抗小鼠 BrdU 单抗（工作浓度 1：50），阳性对照加 PBS。Hoechst 胶催化剂。在显微镜下随机选择 10 个视野，进行参数统计。

1.2.5 Hoechst 染色 对转染过的 A549 细胞培养 48 h 后进行染色处理：吸尽培养液后加入 0.5 mL 细胞固定液固定 10 min；去除固定液用 PBS 洗两遍，每次 3 min；加入 0.5 mL Hoechst 染色液染色 5 min；用 PBS 洗两遍，每次 3 min；滴加抗荧光淬灭封片液盖上盖玻片荧光显微镜下观察。
1.2.6 Western blot 检测细胞中蛋白表达 收集各组细胞，PBS 洗涤 3 次，用 10% SDS-PAGE 过滤蛋白后用半干转膜仪转移蛋白质至 PVDF 膜。用 5% 脱脂牛奶室温封闭蛋白 2 h，随后加入一抗于 4℃ 封闭过夜，第二天加入对应二抗室温封闭 1 h，最后滴加 ECL 显影液。SDS-PAGE 凝胶电泳分离并转至 PVDF 膜，经 5%BSA 封闭后依次孵育一抗和二抗。显色并统计灰度值，以 GAPDH 为内参照，计算相对表达量。

1.2.7 荧光素酶报告实验检测 UCA1 野生质粒的荧光素酶活性。利用生物信息学网站预测 UCA1 和 mir-185-5p 的结合片段，用 RT-PCR 扩增 UCA1 上两者的结合片段，并将该片段插入到 pcDNA 中，构建野生 UCA1 质粒，再利用定点突变技术将结合位点突变，构建 UCA1 突变质粒。用野生 UCA1 质粒、UCA1 突变质粒和 mir-185-5p mimic 分别或同时对细胞进行转染，用 Dual Luciferase 报告基因试剂盒检测各组荧光素酶活性。实验重复 3 次。

1.2.8 免疫荧光 操作步骤按照说明书进行，细胞接种于预先用 0.01% 多聚赖氨酸包被的盖玻片，经药物处理后，加入体积分数为 4% 多聚甲醛固定 30 min，PBS 漂洗，用含 Triton X-100 封闭液在冰上通透 5 min；吸掉通透液，加入预温的封闭液，室温下封闭 1 h；孵育一抗 4 ℃ 过夜，次日，PBS 漂洗，孵育荧光标记的二抗（浓度为 1：200），室温避光孵育 1 h，PBS 漂洗，50% 甘油－橄榄油封片，立即避光共聚焦显微镜观察。

1.3 统计学方法

实验结果以 表示。方差齐且服从正态分布则组间比较用 One-Way ANOVA，反之则用秩和检验，P<0.05 为差异有统计学意义。

2 结果

2.1 干扰 UCA1 对 A549 细胞 UCA1 基因和促凋亡蛋白表达及细胞增殖和凋亡的影响

经过细胞瞬时转染各组 shRNA 后，利用 qRT-PCR 检测转染后肺癌细胞 A549 中 UCA1 相对 mRNA 表达水平，结果表明 sh-UCA1 组中 UCA1 的 mRNA 水平较对照组和 sh-scramble 组表达降低（P<0.01，图 1）；BrdU 染色显示，sh-UCA1 组中 UCA1 细胞凋亡率较对照组和 sh-scramble 组明显降低（P<0.01，图 2）；利用 Western blot 检测各处理组发现，sh-UCA1 组较对照组和 sh-scramble 组，细胞增殖因子 Ki67 下降而细胞凋亡因子 Caspase-3 则上升（P<0.01，图 3）。

2.2 sh-UCA1 对 A549 细胞自噬分子表达的影响

图 1 RT-PCR 检测 UCA1 mRNA 的表达

Fig 1 The UCA1 expression detected by RT-PCR

* * P<0.01，vs. control and sh-scramble groups

图 2 BrdU 染色（×400）检测 A549 细胞生长

Fig 2 The cell viability of A549 cells. BrdU staining ×400

* * P<0.01，vs. control and sh-scramble groups

经过细胞瞬时转染各组 shRNA 载体，利用 Western blot 检测各处理组细胞发现，sh-UCA1 组较对照组和 sh-scramble 组细胞自噬分子 Beclin 1、LC3 II 发生明显下调，而 p62 表达明显上调（P<
0.01, 图4)。

图 3 Western blot 检测 Ki67 和 Caspase-3 蛋白表达

Fig 3 Ki67 and Caspase-3 protein expressions detected by Western blot

** *P<0.01, vs. control and sh-scramble groups

图 4 Western blot 检测 Beclin 1、p62、LC3 I 和 LC3 II 的表达

Fig 4 The expression of Beclin 1, p62, LC3 I and LC3 II detected by Western blot

** *P<0.01, vs. control and sh-scramble groups

2.3 sh-UCA1 转染对 A549 细胞中 miR-185-5p 表达的影响

经过生物信息学技术预测 lncRNA UCA1 与 miR-185-5p 之间的序列差异表明，两者之间具有高度互补性，显示两者具有一定靶向关系(图5)；对 A549 细胞进行 shRNA 干扰处理后发现，sh-UCA1 组较对照组和 sh-scramble 组的 miR-185-5p 表达水平升高(P<0.01, 图6)；利用荧光素酶实验进一步验证显示，UCA1 野生型结合 miR-185-5p 组荧光素酶活性低于 UCA1 野生型组，UCA1 突变组和 UCA1 结合 miR-185-5p 组(P<0.01, 图7)。

图 5 生物信息学软件检测结合序列

Fig 5 The binding sequence was detected by bioinformatics software

图 6 qRT-PCR 检测 miR-185 表达

Fig 6 The miR-185 expression detected by qRT-PCR

** *P<0.01, vs. control and sh-scramble groups

图 7 双荧光素酶报告系统检测靶向关系

Fig 7 The targeting relationship detected by dual luciferase report system

2.4 sh-UCA1 转染及 miR-185 抑制剂作用及对 β-Catenin 通路活性的影响

经过细胞瞬时转染各组 shRNA 载体及添加小 RNA 抑制剂后，利用 Western blot 检测各处理组细胞发现，sh-UCA1 组较对照组 β-Catenin 和 TCF-4 水平下调；而 miR-185 inhibitor 组相较于对照组，β-Catenin 和 TCF-4 水平上升；sh-UCA1 + inhibitor
组相较于 sh-UCA1 组则上调（P<0.01, 图 8）。

图 8 UCA1 干扰对 β-Catenin/TCF-4 信号通路的影响
Fig 8 The effects of sh-UCA1 on β-Catenin/TCF-4 signaling pathway
β-Catenin and TCF-4 were detected by Western blot
* P<0.01, vs. control group; # # P<0.01, vs. sh-UCA1 group

2.5 sh-UCA1 转染及加 miR-185 抑制剂对细胞生长和自噬的影响

图 9 sh-UCA1 转染后检测 A549 细胞生长 (BrdU 染色 ×400) 的影响
Fig 9 The cell viability of A549 cells after sh-UCA1 transfection. BrdU staining ×400

图 10 sh-UCA1 转染后检测 A549 细胞自噬（通过免疫荧光检测 LC3+表达）的影响
Fig 10 The cell autophagy of A549 cells (the LC3+ detected by the immunofluorescence) after sh-UCA1 transfection. ×400

* P<0.01, vs. control group; # # P<0.01, vs. sh-UCA1 group

肺癌是目前全球发病率和致死率最高的一种恶性肿瘤，诸多患者在诊断确诊时都已经处于肺癌晚期，且常伴有肺癌细胞远端转移，使治疗手段受到极大限制，严重影响患者生存率[6]。因此研究肺癌发生机制、寻找新治疗靶点是增加肺癌患者生存率的
关键。

近年来研究表明，lncRNAs 异常表达与肺癌的发生发展密切相关，如 UCA1, snhg14 和 H19 在癌症中均呈异常表达状态，且对癌细胞的增殖、侵袭转移和凋亡产生重要影响 [1]。lncRNA UCA1 在多种肿瘤中均有报道，如肺癌、胃癌和口腔上皮癌等。如 LI 等 [10] 研究表明，UCA1 可以增强肺癌细胞中糖酵解，降低细胞耗氧量，使细胞代谢转变从而促进肺癌肿瘤发生。相关机制可能是 UCA1 通过激活 STAT3 和抑制 miR-143, 进而激活 mTOR 来调控己糖激酶 2 使细胞糖酵解过程增强。ZUO 等 [11] 研究表明 UCA1 通过促进胃癌细胞上皮间质转化过程，来提高癌细胞的侵袭和迁移能力。在口腔上皮癌和乳腺癌中，UCA1 可以激活 Wnt/β-Catenin 通路促使肿瘤发生增殖和侵袭转移，甚至产生对化疗和放疗的耐药性 [12]。本研究证实 lncRNA UCA1 在肺癌细胞中异常高表达，并且能抑制 UCA1 水平的 NSCLC 样本中具有异常表达，而 TCF-4 与肺癌细胞恶化性分化有着密切的关系。本研究证明，干扰 lncRNA UCA1 后肺癌细胞中药靶基因 Ki67 与 TCF-4 的表达量显著下降，提示 lncRNA UCA1 可能是通过上调 β-Catenin/TCF-4 的活性促进细胞自噬发生。

虽然自噬与凋亡在代谢途径和形态学方面有着显著区别，但是他们发挥作用的速度不同存在相互作用。根据本研究证明自噬与凋亡是相互合作关系。根据两者调控方式可以分为两种情况：协调关系、对抗关系及推动关系 [15]。如喜树碱可以通过促进 NSCLC 自噬而抑制细胞发生程序性死亡 [16]。我们在对 lncRNA UCA1 敲除后，初步对自噬分子 Beclin 1, p62 和 LC3 II 以及凋亡分子 Caspase-3 等表达水平检测，发现 Beclin 1 和 LC3 II 发生显著下调，自噬相关分子 p62 和凋亡相关分子 Caspase-3 显著上调，说明 lncRNA UCA1 所参与的细胞自噬和凋亡具有协同效应。但是具体发挥作用的机制还有待于进一步探究。

综上，敲除 lncRNA UCA1 可以有效降低 miR-185-5p 表达水平，进一步抑制下游 β-Catenin/TCF-4 活性，降低了肺癌细胞的自噬和增殖活性。这种抑制效果与 lncRNA UCA1 和 miR-185-5p 相互作用具有一定相关性。因此靶向 lncRNA UCA1 在肺癌治疗中具有重要意义。但涉及 lncRNAs 以及 miRNAs 调控通路复杂，明确具体信号转导机制并选择性阻断关键分子才能为临床靶向治疗肺腺癌提供一定的指导思路。

参考文献

(2018-11-20 收稿, 2019-01-18 修回)