AML1/ETO 阳性急性髓系白血病患者 galectin-3 的表达及临床意义

高 娜1, 王学霞1, 孙建荣1, 段培锋2, 刘增艳1, 刘仁同1, 刘晓丹1, 孙洪坤1, 刘 晓1, 于文征1△
1. 滨州医学院附属医院 血液科 (滨州 256603); 2. 滨州医学院附属医院 儿科 (滨州 256603)

【摘要】目的 探讨 AML1/ETO 阳性急性髓系白血病 (AML) 患者半乳糖凝集素 3 (galectin-3, gal-3) 表达及其临床意义。方法 采用实时定量 RT-PCR (RQ-PCR) 法检测 53 例 AML1/ETO+ AML 患者骨髓单个核细胞中 gal-3 mRNA 表达水平。ELISA 法检测患者外周血 gal-3 蛋白水平。分析 gal-3 mRNA 表达与疾病预后的相关性。结果 ① gal-3 mRNA 及蛋白在初诊 AML1/ETO+ AML 中表达呈正相关 (r=0.732, P<0.001), 初诊患者 gal-3 mRNA 与蛋白表达呈正相关, gal-3 mRNA 较高者预后较好; ② 初诊时 gal-3 mRNA 表达水平越高, 患者白细胞数量越低 (P=0.014), CD34 表达和附加染色体异常的比例越高 (P=0.026); ③ gal-3 mRNA 高表达组与低表达组在完全缓解 (CR)、部分缓解 (PR)、诱导期死亡 (即早期死亡) 率上无明显差异 (P>0.05), 但两组患者在复发率上有统计学差异 (P=0.029)。结论 gal-3 mRNA 高表达组患者总生存率 (OS) 及无事件生存率 (DFS) 均较低表达组缩短 (P=0.007, P=0.015), 累积复发率增高 (P=0.045), 但累积死亡率无明显差异 (P>0.05)。 Cox 风险比例模型揭示 gal-3 mRNA 是影响 AML1/ETO+ AML 患者 OS 及 DFS 的独立指标。结论 骨髓 gal-3 mRNA 有可能成为 AML1/ETO+ AML 患者评估预后及指导治疗的重要参考指标。

【关键词】 gal-3 mRNA 急性髓系白血病 AML1/ETO 预后

Galectin-3 Expression and Its Clinical Significance in Acute Myeloid Leukemia with Positive AML1/ETO Fusion Gene

GAO Na1, WANG Xue-xia1, SUN Jian-rong1, DUAN Pei-feng1, LIU Zeng-yan1, LIU Ren-tong1, LIU Xiao-dan1, SUN Hong-kun1, LIU Xiao1, YU Wen-zheng1△. 1. Department of Hematology, Binzhou Medical University Hospital, Binzhou 256603, China; 2. Department of Pediatrics, Binzhou Medical University Hospital, Binzhou 256603, China
△ Corresponding author, E-mail: bzywzh2009@163.com

【Abstract】Objective To investigate the mRNA expression of galectin-3 and its clinical significance in acute myeloid leukemia (AML) patients carrying AML1/ETO fusion gene. Methods RQ-PCR method was used to detect the expression of galectin-3 mRNA in bone marrow mononuclear cells of 53 AML patients with AML1/ETO+. ELISA was used to detect the expression of galectin-3 protein in peripheral blood, and the correlations of galectin-3 expression with clinical and laboratory features and outcomes were analyzed. Results The mRNA and protein levels of galectin-3 were significantly higher in newly diagnosed AML1/ETO+ AML patients compared with the control (P<0.001). Galectin-3 mRNA and protein expressions were positively correlated (r = 0.732, P < 0.001). Galectin-3 protein was significantly decreased during the period of complete remission (CR) (P < 0.001). The mRNA expression of galectin-3 was negatively correlated with the count of white blood cells (P = 0.014), and positively correlated with CD34 expression and additional chromosomal aberrations (ACA) (P = 0.001, P = 0.026). There was no significant difference in CR, partial remission (PR), induction death (early mortality) between galectin-3 high-expression group and low-expression group (P > 0.05), but there was significant difference in recurrence rate between the two groups (P = 0.029). The median overall survival (OS) rate and disease-free survival (DFS) rate were shortened in the high-expression group (P = 0.007, P = 0.015) and the cumulative incidence of relapse was increased (P = 0.045), but there was no significant difference in the cumulative incidence of mortality (P > 0.05). Cox regression analysis suggested galectin-3 mRNA level an independent indicator of OS and
DFS in AML1/ETO+ AML patients. Conclusion Bone marrow galectin-3 mRNA level may be an important reference index for evaluating the prognosis and guiding the treatment of AML1/ETO+ AML patients.

【Keywords】 Galectin-3 mRNA Acute myeloid leukemia AML1/ETO Prognosis

人类 galectin-3 (gal-3) 由 LGALS3 基因编码，位于 14 号染色体 q21 ～ q22，属于 galectin 家族成员之一。gal-3 广泛存在于人体组织和细胞中，参与调控细胞周期、细胞凋亡、细胞迁移、肿瘤血管新生等多种生理及病理过程，在恶性肿瘤的发生、发展中发挥了重要作用[1-7]。近年来越来越多的证据表明 gal-3 与多种恶性疾病的发生发展关系密切[8-10]。

然而，gal-3 与急性白血病的临床预后相关性报道很少。我们将近期研究证实外周血 gal-3 蛋白在急性髓系白血病 (AML) 包括急性早幼粒细胞白血病 (APL) 中高表达，且与疾病预后密切相关[11-15]。

1.1 材料和方法

1.1.1 病例资料

本研究经浙江大学附属医院伦理委员会批准（伦理批第（2018-025-01）号）。选择浙江大学附属医院 2012 年 1 月至 2016 年 12 月期间初诊及次性治疗的 AML1/ETO+ AML 患者为研究对象，在无菌、无刺激状态下分别抽取骨髓液及外周血标本，骨髓标本常规获取单个核细胞，外周血标本经离心，单个核细胞及上清液于 -80 ℃ 冰箱冷冻备用，3 日内分批次检测。

1.1.2 代表性激素，同时扫描随机同期于我院治疗的非血液肿瘤患者 (良性缺铁性贫血) 20 例骨髓及外周血标本，30 例健康人外周血标本作为对照组。白血病的诊断依据形态学、免疫学、细胞遗传学及分子生物学 (MICM) 分型和张之南主编的《血液病诊断及疗效标准》，53 例 AML1/ETO+ AML 患者中男性 28 例，女性 25 例，中位年龄 45.2（范围 31 ～ 66）岁。

1.1.3 方法

所有患者均经过细胞遗传学及分子生物学技术(应用常规染色体 RT-PCR (RQ-PCR) 检测 AML1/ETO 融合基因表达量) 明确诊断为 AML1/ETO+ AML。患者确诊后均接受了 DA (柔红霉素 45 mg/m²·d, day 1 ～ 3, 100 mg/m²·d, day 1 ～ 7) 方案引导性化疗，缓解后均接受了序贯疗法，其中 32 例接受了 2 ～ 4 个疗程中大剂量 Ara-C (Cl 0.001 mg/m²·d, day 1 ～ 3, Ara-C (Ara-C) 100 mg/m²·d, day 1 ～ 7) 方案巩固化疗，其余患者接受了常规剂量方案的巩固治疗。包括 DA, MAC (米托蒽醌 8 mg/m²·d, day 1 ～ 3, Ara-C 100 mg/m²·d, day 1 ～ 7), HAC (三尖杉脂碱 2 mg/m²·d, day 1 ～ 7), HAC 高三尖杉脂碱 100 mg/m²·d, day 1 ～ 7) 等。

1.2 RQ-PCR 检测骨髓单个核细胞 gal-3 mRNA 的表达

采用 TRizol 法提取骨髓单个核细胞总 RNA，常规检测浓度和纯度。引物根据 Primer Express 3.0 设计软件 (美国 Applied Biosystems 公司) 的相应标准进行设计。RQ-PCR 引物序列如下：F 5′-GACCTGATTGATGCCTTAT-3′, R 5′-AACCCGACTGTTCTTCTCTCC-3′；内参 β-actin 引物序列如下：F 5′-TGTCCTCACTGCTACTCA-3′，R 5′-GAACACTTCAACTTCC-3′。gal-3 的逆转录及扩增严格按试剂盒 (美国 Promega 公司) 说明书，在 RQ-PCR 仪 (美国 Applied Biosystems 公司) 上进行检测，扩增条件；94 ℃ 3 min 灭活 M-MuLV 逆转录酶，变性 20 s, 55 ℃ 30 s, 60 ℃ 延伸 1 min, 共 45 个循环，每轮扩增均进行荧光收集。实验中以 β-actin 作为管家基因计算目的基因的相对表达量 (2^-ΔΔCt 法)。每个样本至少独立检测 2 次。

1.3 海联免疫吸附法 (ELISA) 检测 gal-3 蛋白的表达

血浆 gal-3 蛋白表达的检测严格遵照 ELISA 试剂盒 (德国 IBL 公司) 操作说明进行。

1.4 患者随访

随访对象的住院及门诊资料为随访依据，完成化疗患者医院外多为电话随访。随访截止日期为 2017 年 11 月 30 日，随访内容包括原发病是否复发、缓解与否及存活情况。所有患者的平均随访时间为 28.9 (1 ～ 63) 月，总生存期 (overall survival, OS) 指从疾病诊断之日到死亡或随访终止之日。无病生存期 (disease-free survival, DFS) 指从取得完全缓解 (CR) 之日起至白血病复发或原发病病情进展导致患者死亡的时间。

1.5 统计学方法

数值变量的比较采用 t 检验；分类变量的比较采用卡方检验；两个变量的相关性分析采用 Spearman 等相关检验；通过绘制 Kaplan-Meier 曲线比较不同组的 OS 及 DFS，单因素分析应用 log-rank 检验，多因素分析应用 Cox 比例风险模型，P ≤ 0.05 为差异有统计学意义。为尽可能降低不同化疗方案对临床预后的干扰，仅 32 例接受中大剂量 Ara-C 巩固治疗的患者被纳人生存分析。

2 结果

2.1 gal-3 mRNA 及蛋白在 AML1/ETO+ AML 患者中的表达

AML1/ETO+ AML 患者骨髓单个核细胞中 gal-3 mRNA 平均表达量 1 004.99 ± 406.91，良性缺铁性贫血患者骨髓 gal-3 mRNA 平均表达量 385.58 ± 137.29，两者差异有统计学意义 (P < 0.001)。AML1/ETO+ AML 患者血浆 gal-3 蛋白平均表达量 5.97 ± 3.36 ng/mL，良性缺铁性贫血
血患者血浆 gal-3 蛋白平均表达量（3.94±1.48）ng/mL。正常人血浆 gal-3 蛋白平均表达量（3.49±1.49）ng/mL。AML/E TO AML 中 gal-3 蛋白平均表达量高于良性缺铁性贫血患者（P=0.011）及正常人（P＜0.001）。而两者之间无明显差异（P＞0.05）。我们对 16 例诱导化疗后缓解的患者，分别对 9 例复发患者分别测定了血浆 gal-3 蛋白，发现完全缓解期 gal-3 蛋白平均表达量（1.41±0.83）ng/mL 较初诊 gal-3 蛋白平均表达量（1.65±1.97）ng/mL 降低（P＜0.001），复发阶段表达量（1.85±0.49）ng/mL 较完全缓解期表达量（1.37±0.59）ng/mL 无明显变化（P=0.077），但仍较初诊时表达量（5.51±0.8）ng/mL 仍下降（P＜0.001）。

2.2 初诊时 gal-3 mRNA 与蛋白表达的相关性

AML/E TO AML 患者骨髓细胞 gal-3 mRNA 与血浆 gal-3 蛋白表达呈正相关（r=0.732，P＜0.001），良性缺铁性贫血患者骨髓 gal-3 mRNA 与血浆 gal-3 蛋白表达亦呈正相关（r=0.775，P＜0.001）。患者 AML/E TO 融合基因表达量与 gal-3 mRNA 及蛋白表达均无相关性（P＞0.05）。

2.3 初诊时骨髓细胞 gal-3 mRNA 表达水平与患者临床特征及实验室指标的相关性

本研究以 gal-3 mRNA 平均表达量（1 004.99）为界点，将患者分为两组：gal-3 mRNA 高表达组及 gal-3 mRNA 低表达组。由表 1 可见，初诊 gal-3 mRNA 表达水平越高，白细胞数越低，CD34 表达越高，附加工染色体异常（ACA）的比例亦越高（P 均＜0.05），与其他临床及实验室指标无关。

2.4 初诊时 gal-3 mRNA 表达水平与临床疗效及预后的相关性

两组患者 CR 率、部分缓解（PR）率、诱导期死亡（即早期

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n=53)</th>
<th>gal-3 mRNA high-expression group (n=20)</th>
<th>gal-3 mRNA low-expression group (n=33)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0.409</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>25 (47.2)</td>
<td>11 (55.0)</td>
<td>14 (42.4)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>28 (52.8)</td>
<td>9 (45.0)</td>
<td>19 (57.6)</td>
</tr>
<tr>
<td>Age/yr.</td>
<td>45.2 (31-66)</td>
<td>47.5 (31-65)</td>
<td>43.8 (31-66)</td>
<td>0.631</td>
</tr>
<tr>
<td>Laboratory data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC/(10^9 L^-1)</td>
<td>8.51 (1.05-72.54)</td>
<td>4.22 (1.05-2.81)</td>
<td>11.11 (2.11-72.54)</td>
<td>0.014</td>
</tr>
<tr>
<td>Hemoglobin/(g/L)</td>
<td>85.7 (59-121)</td>
<td>86.3 (59-117)</td>
<td>85.4 (60-121)</td>
<td>0.844</td>
</tr>
<tr>
<td>Platelet/(10^12 L^-1)</td>
<td>4.4 (8-205)</td>
<td>52.6 (20-205)</td>
<td>39.5 (8-96)</td>
<td>0.214</td>
</tr>
<tr>
<td>Serum ferritin/(ng/mL)</td>
<td>443.4 (58-1324)</td>
<td>460.1 (82-129)</td>
<td>433.3 (58-1322)</td>
<td>0.804</td>
</tr>
<tr>
<td>Serum LDH/(IU/L)</td>
<td>1291.7 (178-455)</td>
<td>1493.3 (219-455)</td>
<td>1169.5 (178-4777)</td>
<td>0.631</td>
</tr>
<tr>
<td>Immunophenotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD34^+</td>
<td>60.4 (9-90)</td>
<td>72.2 (44-90)</td>
<td>53.2 (9-88)</td>
<td>0.001</td>
</tr>
<tr>
<td>CD3^+</td>
<td>27.4 (5-80)</td>
<td>29.5 (5-80)</td>
<td>26.2 (5-65)</td>
<td>0.534</td>
</tr>
<tr>
<td>CD19^+</td>
<td>34.2 (6-80)</td>
<td>38.2 (12-80)</td>
<td>31.8 (6-65)</td>
<td>0.207</td>
</tr>
<tr>
<td>CD56^+</td>
<td>43.1 (5-95)</td>
<td>49.4 (5-95)</td>
<td>39.3 (5-85)</td>
<td>0.183</td>
</tr>
<tr>
<td>ACA</td>
<td>29 (54.7)</td>
<td>15 (75.0)</td>
<td>14 (42.4)</td>
<td>0.026</td>
</tr>
<tr>
<td>Molecular abnormalities^*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT3-ITD</td>
<td>2 (5.9)</td>
<td>0 (0)</td>
<td>2 (10.5)</td>
<td>0.492</td>
</tr>
<tr>
<td>NPM1</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0 (0)</td>
<td>0.441</td>
</tr>
<tr>
<td>c-kit</td>
<td>7 (20.6)</td>
<td>5 (33.3)</td>
<td>2 (10.5)</td>
<td>0.199</td>
</tr>
<tr>
<td>ASXL1</td>
<td>4 (11.8)</td>
<td>1 (6.7)</td>
<td>3 (15.8)</td>
<td>0.613</td>
</tr>
<tr>
<td>Induction response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>44 (83.0)</td>
<td>15 (75.0)</td>
<td>29 (87.9)</td>
<td>0.272</td>
</tr>
<tr>
<td>PR</td>
<td>2 (3.8)</td>
<td>0 (0)</td>
<td>2 (6.1)</td>
<td>0.521</td>
</tr>
<tr>
<td>Induction death</td>
<td></td>
<td></td>
<td></td>
<td>0.138</td>
</tr>
<tr>
<td>Relapse</td>
<td>16 (30.2)</td>
<td>10 (50.0)</td>
<td>6 (18.2)</td>
<td>0.029</td>
</tr>
</tbody>
</table>

WBC: White blood cell; LDH: Lactate dehydrogenase; ACA: Additional cytogenetic aberrations; FLT3-ITD: FMS-like tyrosine kinase 3-internal tandem duplication; NPM1: Nucleophosmin-1; c-kit: C-receptor tyrosine kinase 1; ASXL1: Additional sex comb like-1; CR: Complete remission; PR: Partial remission. * Molecular cytogenetic tests were performed in 34 patients. Among them, 15 were classified as gal-3 high expression group and 19 as gal-3 low expression group.
外影响患者 DFS 的因素还有 ACA。Cox 比例风险模型显示年龄（HR = 5.823；95% CI: 1.812 ~ 18.711；P = 0.003）、c-kit（HR = 6. 495；95% CI: 1.469 ~ 30.091；P = 0.014）、gal-3 mRNA（HR = 0.218；95% CI: 0.056 ~ 0.840；P = 0.027）均为患者 OS 的独立影响因素，而 DFS 的独立影响因素只有 gal-3 mRNA（HR = 0.286；95% CI: 0.091 ~ 0.900；P = 0.032）。根据 Cox 比例风险模型的结果，我们创建了

AML1/ETO+ AML 术后多因素评分系统。将影响 OS 的 3 个独立不良风险因素（年龄＞50 岁，c-kit 突变，gal-3 mRNA 高表达）分别赋值 1 分，无上述因素 0 分。受到病例数所限，32 例患者根据多因素评分系统分为 3 组，分别是 Group 1 (n = 10)，Group 2 (n = 13)，Group 3 (n = 9)。通过绘制每组的生存曲线（图 2）发现，每组间比较，预后差异均有统计学意义（P < 0.001）。

图 1 不同 gal-3 mRNA 表达组之间的生存分析

*Fig 1 Kaplan-Meier survival analysis for AML1/ETO+ AML according to gal-3 mRNA levels
*High-expression: ≥1 004.99, low-expression: <1 004.99

表 2 接受中大剂量阿糖胞苷治疗患者的单因素及多因素分析

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall survival</th>
<th>Disease free survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate</td>
<td>Multivariate HR (95% CI)</td>
</tr>
<tr>
<td>Age/yr, >50 vs. ≤50</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>WBC/(10^9 L^-1), >10 vs. ≤10</td>
<td>0.148</td>
<td></td>
</tr>
<tr>
<td>PLT/(10^9 L^-1), >40 vs. ≤40</td>
<td>0.879</td>
<td></td>
</tr>
<tr>
<td>CD34, positive vs. negative</td>
<td>0.185</td>
<td></td>
</tr>
<tr>
<td>CD33, positive vs. negative</td>
<td>0.197</td>
<td></td>
</tr>
<tr>
<td>CD19, positive vs. negative</td>
<td>0.484</td>
<td></td>
</tr>
<tr>
<td>CD66, positive vs. negative</td>
<td>0.051</td>
<td>0.329</td>
</tr>
<tr>
<td>ACA, positive vs. negative</td>
<td>0.0883</td>
<td>0.191</td>
</tr>
<tr>
<td>c-kit, positive vs. negative</td>
<td><0.001</td>
<td>0.014</td>
</tr>
<tr>
<td>gal-3 mRNA, low. vs. high-expression</td>
<td>0.007</td>
<td>0.027</td>
</tr>
</tbody>
</table>

*High-expression: ≥1 004.99, low-expression: <1 004.99, HR: Harzard ratio, CI: Confidence interval

图 2 不同评分组 AML1/ETO+ AML 患者 OS 曲线

*Fig 2 Kaplan-Meier survival curves for OS in AML1/ETO+ AML according to the scoring system

On the basis of scoring system including gal-3 mRNA, age and c-kit, the patients were divided into 3 groups

3 讨论

AML1/ETO+ AML 目前仍被认为是预后较好的白血病之一[10-11]，大剂量 Ara-C 的应用更是延长了患者的生存期。然而，初诊时外周血高白细胞往往提示预后差[12]，另外，初诊时骨髓原始细胞比例较高，合并髓外侵犯或中枢神经系统白血病者，以及年龄较大者通常预后也欠佳[13-14]。尽管 AML1/ETO 在此类白血病分子学发病中发挥关键作用，然而，AML1/ETO 过表达或转基因小鼠并没有发生白血病[15]，说明 AML1/ETO 并不能单独诱发自血病。越来越多的证据表明：AML1/ETO+ AML 容易合并额外复杂核型，c-kit 突变，RAS 突变，ASXL1 突变，ASXL2 突变等遗传及分子学异常[16-18]，这些分子异常在白血病发生发展与 AML1/ETO 发挥协同作用，影响预后，构成所谓的“二次打击”。

gal-3 是一种多功能的胞外体 galectin 家族成员，不具备
酶活性，却在体内参与多种生理病理过程，是目前最受关注的三类抗凋亡蛋白。研究认为，与初诊急性白血病患者相比，gal-3 mRNA 水平在复发患者中表达水平明显增高[23]。gal-3 mRNA 在 AML 患者中与年龄、CD14 的表达呈正相关，gal-3 mRNA 高表达者预后较差[26]。关于 gal-3 在急性淋巴细胞白血病 (ALL) 中的表达意义尚不明确[14]。急性白血病细胞株相比，慢性粒细胞白血病 (CML) 慢性期细胞株中 gal-3 mRNA 表达更强。在发生急淋变以及费城染色体 (Ph) 患者中表达却显著降低[14]。另外，有文献报道慢性粒细胞性淋巴细胞白血病 (CML) 患者中 gal-3 mRNA 高表达，而在侵袭性 CLL 中表达却有明显下调[27]，提示 gal-3 mRNA 在 ALL 进展过程中可能发挥负性调节作用。以上结果表明 gal-3 在髓系和淋巴系肿瘤的表达及作用上可能存在差异。

本研究中，我们检测了 AML1/ETO+ AML 患者血浆中 gal-3 蛋白表达情况，发现 gal-3 蛋白在初诊患者中高表达，完全缓解时表达显著下降，提示 gal-3 血清表达量可能与疾病严重程度相关。我们通过对临床病例的回顾性分析探讨了 gal-3 mRNA 与 AML1/ETO+ AML 患者预后的相关性。结果发现 gal-3 mRNA 高表达者易复发。预后差，Cox 比例风险模型提示 gal-3 mRNA 可以作为评估 AML1/ETO+ AML 患者 OS 及 DFS 的独立指标。除了 gal-3 mRNA 外，影响 OS 的独立因素还有年龄及 c-kit 突变。初诊时外周血白细胞 (PWBC) 并不是 OS 及 DFS 的影响因素。本研究还发现 gal-3 mRNA 与初诊时 PWBC 有关，在高白细胞患者中，gal-3 mRNA 表达下降。以及大剂量 Ara-C 的应用，两者是否可以抵消初诊时 PWBC 对 OS 及 DFS 的不利影响需要进一步研究。

AML1/ETO+ AML 细胞免疫表型也有其特点。除了 CD34、HLA-DR 及 MPO 外，往往有 CD9 及 CD56 的高表达。在本研究群体中，CD34 的平均阳性率为 60.4%，gal-3 mRNA 高表达者 CD34 阳性程度比低表达者增高 (72.2% vs. 53.2%，P = 0.001)。CD34 作为原始细胞的分子标记，其在白血病细胞中表达增强可能引导细胞向更加原始或幼稚的方向分化，导致细胞侵袭力增强[22]。然而，gal-3 mRNA 高表达者 CD34 表达高的原因需要进一步探讨。

AML1/ETO+ AML 患者容易合并 ACA，其中以染色体缺失最常见，其次是 del(9q) 以及 +8，可以是合并 1 种 ACA，也可以是 2 种或以上 ACA 同时出现。ACA 被认为是影响 AML1/ETO+ AML 患者预后的重要因素[14]。本研究中 ACA 发生率为 54.7%，略高于国外报道[23]，gal-3 mRNA 高表达者 ACA 发生率更高 (75.0% vs. 42.4%，P = 0.026)，导致这一现象的原因值得进一步研究。AML1/ETO+ AML 易合并其他分子突变，其中以 c-kit 突变最常见。研究发现 AML1/ETO+ 在 U937 细胞中高表达可显著上调 c-kit 的表达水平，导致 c-kit 的活化及功能增强。两者发挥作用协同作用[21]。除 c-kit 以外，其他涉及受体酪氨酸激酶 (PTK) 介导的信号通路的分子突变如 FLT3、RAS、JAK2 也在此类白血病中较常出现[25]。由此推测 AML1/ETO 融合基因的产生可能会导致 PTK 途径的异常活化。这可能与此类白血病的发病有直接的关系。而 gal-3 高表达可诱导 PTK 信号通路中 BCL-2、AKT、ERK 等多种抑制凋亡蛋白磷酸化而激活[22-24]。由此表明，AML1/ETO 可能作为起始因子参与上调 gal-3 的表达，两者在白血病细胞调亡信号通路上发挥协同作用，促进细胞增殖或抑制调亡，当然这些需要基础实验来证实。受到病例数量的限制，本研究无法对其他分子突变包括 FLT3、NPM1、ASXL1 进行预后相关性分析，导致一定的局限性。

目前认为 AML1/ETO+ AML 一类是异性强非常强的疾病，对于此类患者在临床预后分层，从而实施个体化治疗，有望改善疾病的预后。本研究中筛选出了影响 OS 的 3 个独立指标 (年龄，c-kit，gal-3 mRNA)，并结合 Cox 风险比例模型的结果构建了 AML1/ETO+ AML 的多因素预后评分模型。我们认为此类白血病如何合并上述 2 个和 3 个指标的异常 (年龄，c-kit 突变阳性，gal-3 mRNA 高表达)，可以划入高危组，大剂量化疗或干细胞移植可能更有利于改善患者的预后。当前，针对 gal-3 的靶向药物正在陆续被开发并展现出其独特的优势[28-29]，gal-3 有望成为 AML1/ETO+ AML 可靠的风险因子及潜在的分子靶点。

参考文献
[8] GAO N, WANG XX, SUN JR, et al. Clinical impact of galectin-3 in newly diagnosed t (15;17) (q22; q21)/PML-

(2018-06-11 收稿，2018-09-09 修订)