欢迎来到《四川大学学报(医学版)》 2025年3月31日 星期一

中国护士群体足部重度疼痛风险预测的列线图模型构建

王立群, 宁宁, 陈佳丽, 李佩芳, 谢静颖, 杨辉亮, 朱红彦, 侯爱琳

王立群, 宁宁, 陈佳丽, 等. 中国护士群体足部重度疼痛风险预测的列线图模型构建[J]. 四川大学学报(医学版), 2023, 54(3): 596-601. DOI: 10.12182/20230560204
引用本文: 王立群, 宁宁, 陈佳丽, 等. 中国护士群体足部重度疼痛风险预测的列线图模型构建[J]. 四川大学学报(医学版), 2023, 54(3): 596-601. DOI: 10.12182/20230560204
WANG Li-qun, NING Ning, CHEN Jia-li, et al. Nomographic Model for Predicting Severe Foot Pain in Nurses from Tertiary Hospitals in China[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(3): 596-601. DOI: 10.12182/20230560204
Citation: WANG Li-qun, NING Ning, CHEN Jia-li, et al. Nomographic Model for Predicting Severe Foot Pain in Nurses from Tertiary Hospitals in China[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(3): 596-601. DOI: 10.12182/20230560204

中国护士群体足部重度疼痛风险预测的列线图模型构建

详细信息
    通讯作者:

    陈佳丽: E-mail:cjl85614115@163.com

Nomographic Model for Predicting Severe Foot Pain in Nurses from Tertiary Hospitals in China

More Information
  • 摘要:
      目的  调查护士足部重度疼痛的发生率及常见部位,明确其危险因素,并构建个体足部重度疼痛风险预测列线图。
      方法  采用分层整体抽样方法,于2019年8–12月期间选取在我国351家三级医院的10691名护士,调查足部重度疼痛的发生现状。将可能影响其发生的变量进行单因素分析,明确护士足部重度疼痛发生的影响因素,进一步采用logistic逐步回归分析,筛查足部重度疼痛发生的独立危险因素。将多因素回归分析结果中有统计学意义的因素纳入Nomograph预测模型的构建。通过一致性指数(C-index)和1000个bootstrap样本校准来测量Nomograph预测性能。
      结果  10691名护士中发生足部疼痛3419名,发生率为31.98%,其中重度疼痛(VAS 7~10分)发生率为2.27%(243名)。重度疼痛部位多见于双侧脚掌与足跟。研究最终纳入年龄、学历、工作鞋材质、工作鞋舒适程度、足部外伤史、是否合并其他并发症这6个因素,构建了Nomograph预测模型。C-index值为0.706,标准曲线与校准预测曲线贴合良好。
      结论  该研究构建的模型具有良好的预测效果,指标简单易得,可为护士预防重度足部疼痛提供借鉴。

     

    Abstract:
      Objective  To investigate the prevalence and common sites of severe foot pain among nurses, to define the risk factors of severe foot pain in nurses in tertiary hospital in China, and to construct a nomograph model for predicting individuals' risks for severe foot pain.
      Methods  Between August 2019 and December 2019, a stratified global sampling method was used to select 10691 nurses from 351 tertiary hospitals in China to investigate the incidence of severe foot pain among them. The variables that may affect the occurrence of severe foot pain were analyzed by single factor analysis to identify the influencing factors of severe foot pain in nurses. Furthermore, the independent risk factors of severe foot pain were analyzed by stepwise logistic regression analysis. The statistically significant factors identified in the multivariate regression analysis were incorporated into the nomograph prediction model. The predictive performance of the nomograph was measured by the consistency index (C-index) and calibrated with 1000 Bootstrap samples.
      Results  A total of 3419 nurses out of the 10691 had foot pain, resulting in an incidence of 31.98%. The incidence of severe pain (VAS score 7-10) was 2.27% (243 of 10691). The locations of severe pain were more commonly found in the soles and heels of both feet. Six factors, including age, education, the material of the work shoes, comfortableness of the work shoes, number of complications, and foot injure history, were incorporated in the nomograph predicting model. The C-index value was 0.706 and the standard curve fitted well with the calibrated prediction curve.
      Conclusion  The risk prediction model constructed in this study showed sound performance in predicting the risk of severe foot pain in nurses, and all the indicators involved are simple and the relevant data are easily obtained. The model can provide reference for preventing severe foot pain in nurses.

     

  • 由于高体力需求、长时间站立和长距离行走,护理人员的足部压力高于普通人,其足部疼痛的发生率较高[1]。据报道在日本、埃塞俄比亚、马来西亚、澳大利亚,护士足踝疼痛的发生率分别为23%、43.7%、47.2%和55.3%[1-4]。足部疼痛对护士的工作及日常生活造成负面影响[1,3],长期且严重的足部疼痛不仅降低工作效率,增加治疗费用,甚至导致慢性残疾,造成社会医疗保障负担[5-6]。目前国内外研究多关注住院患者重度疼痛的影响因素、老年人的重度疼痛的发病率及疼痛特征等[7-9],但没有护士的足部重度疼痛及其影响因素的相关研究[10],且影响因素对风险预测的解释度也不确定。因此本研究旨在调查我国三级医院护士足部重度疼痛的发生率、常见部位,分析重度疼痛的危险因素,构建中国护士群体足部重度疼痛风险预测的列线图模型,以利于建立预防及管理足部重度疼痛的相关措施。

    本研究获得四川大学华西医院伦理委员会的批准,批文为2018年审(536)号。2019年8–12月,采用分层整体抽样方法,以三级医院为抽样单位,以护士个人为调查对象进行调查。因全国各行政区域医疗资源分布不均匀,故按照全国已划分的七个行政区域(华中、华北、华东、华南、西北、西南、东北)为分层依据,分为七层,计算每层应抽样数(各个区域的三级医院数量比为2∶1.5∶4∶1∶2∶2∶1,抽样数量分别为52家、39家、104家、26家、52家、52家、26家),最终纳入351家三级医院。在这351家医院中发放调查问卷的链接,收取数据,最终共选取10691名护士。纳入标准包括:①在我国持有护士职业资格证书的护士;②在知情同意的情况下,自愿参与本次调查。排除标准:①经验不足1年的护士;②足部畸形或近期手术的护士。

    由研究者自行设计《护士足部健康状况调查问卷》,内容包括护士人口学资料、护士职业相关资料及健康等相关资料调查,还有对护士足部疼痛的评估。

    包括人口学资料、护士职业相关资料及健康相关资料。人口学资料包括:性别、年龄、身高、体质量、文化程度等。护士职业相关资料包括:科室、职称、工作时长、夜班数、工作鞋袜的使用情况、足部疾患护理经验等。健康相关资料包括:护士自我感知的整体健康水平、护士自我感知的足部健康状况、足部外伤史等。

    评估护士疼痛的存在,疼痛的位置,疼痛的程度和疼痛的性质。首先护士用“是/否”回答了在过去7 d是否有足部疼痛的问题。报告足部疼痛的护士被要求在足部图片上标出他们足部疼痛的位置以及疼痛的性质,同时采用视觉模拟评分(visual analogue scale, VAS)选择疼痛程度,选项从0(无痛)到10(非常痛)。

    利用问卷星平台将《护士足部健康状况调查问卷》制作成电子问卷并生成二维码或网页链接,电子版问卷首页介绍了本研究的目的、意义、知情同意等内容,将问卷发放给抽样到的三级医院的符合纳入排除标准的研究对象,研究对象自愿填写。在线问卷平台开放时间为3个月,并设置问卷不可重复填写。

    资料收集后,从问卷星平台下载数据,对数据进行逻辑差错,及时剔除无效问卷。根据数据类型,采用频数、构成比、中位数、四分位间距进行统计描述,采用SPSS 22.0软件进行数据分析,符合正态分布的计量资料以$\bar x\pm s $表示,计数资料采用构成比或百分比。组间比较采用方差分析或t检验。采用多因素logistic逐步回归分析筛查护士足部重度疼痛的独立危险因素。应用R4.0软件构建列线图模型,采用受试者操作特征(ROC)曲线和校准曲线评价模型的预测效能。P<0.05为差异有统计学意义。

    本次调查共纳入了10691名护士,平均年龄(31.96±7.31)岁。大部分的研究对象为女性(10416名,97.44%),年龄大多分布在26岁到40岁之间(69.4%);69.5%的研究对象体质量指数处于正常范围(18.50~23.99 kg/m2);73.9%的护士学历为本科生及以上;30.34%的护士来自内科,42.49%的护士来自外科;95.46%的护士职称为主管护师及主管护师以下。10691名护士发生足部疼痛3419名,发生率为31.98%,其中243名为重度疼痛(VAS 7分及以上),发生率为7.10%。部位多见于双足脚掌和足跟处,疼痛类型多为酸痛、胀痛及刺痛,如表1所示。

    表  1  护士的临床特征及足部重度疼痛调查结果
    Table  1.  Clinical features of the nurses covered in the study and the results of the severe foot pain survey
    Clinical featureVariableCase%
    Sex Male 275 2.57
    Female 10416 97.42
    Age/yr. 18-25 1953 18.26
    26-30 3464 32.40
    31-40 3958 37.02
    41-60 1316 12.30
    Body mass index/(kg/m2) <18.5 1345 12.58
    18.5-23.99 7429 69.48
    24-27.99 1566 14.64
    ≥28 351 3.32
    Education Secondary 122 1.14
    Junior college 2492 23.33
    Bachelor 7896 73.85
    Postgraduate 181 1.69
    Marital status Never married 3247 30.37
    Married 7220 67.53
    Widowed or divorced 224 2.10
    Childbirth 0 4020 37.60
    Pregnancy 301 2.82
    1 4610 43.12
    2 1572 14.70
    ≥3 188 1.76
    Department Medical department 3244 30.34
    Surgery department 4543 42.49
    Others 2904 27.16
    Professional title Nurse 2597 24.29
    Senior nurse 4891 45.74
    Supervisor nurse 2718 25.42
    (Associate) professor of nursing 485 4.53
    Years of nursing experience/year ≤5 3402 31.82
    6-10 3465 32.41
    11-20 2575 24.09
    ≥21 1249 11.68
    VAS 1-3 1929 56.42
    4-6 1247 36.47
    7-10 243 7.10
    Pain location Left sole 133 54.73
    Right sole 118 48.56
    Left heel 102 41.98
    Right heel 98 40.33
    Quality of pain Swelling pain 142 58.44
    Sourness and pain 160 65.84
    Stabbing pain 67 27.57
    下载: 导出CSV 
    | 显示表格

    将调查对象分为重度疼痛(VAS 7~10分)和非重度疼痛(VAS 0~6分),表2分别对影响重度疼痛发生的变量进行单因素分析。结果显示年龄、体质量指数、学历等14个自变量差异有统计学意义。进一步行logistic逐步回归分析,结果显示,护士足部重度疼痛的独立危险因素为年龄增长、工作鞋舒适程度、工作鞋材质为棉布、足部外伤史、是否合并其他并发症,高中学历为保护因素。见表3

    表  2  护士足部重度疼痛的单因素分析
    Table  2.  Univariate analysis of severe foot pain in nurses
    VariableVAS 0-6
    (n=10448)/case (%) or $ \bar x \pm s $
    VAS 7-10
    (n=243)/case (%) or $ \bar x \pm s $
    t/χ2P
    Age/yr. 31.89±7.278 34.84±8.151 <0.001
    Body mass index/(kg/m2) 23.39±4.560 22.61±4.461 0.011
    Sex 0.51 0.473
     Male 267 (2.6) 8 (3.3)
     Female 10181 (97.4) 235 (96.7)
    Highest education achieved 11.18 0.011
     Secondary 115 (1.1) 7 (2.9)
     Junior college 2450 (23.4) 42 (17.3)
     Bachelor 7707 (73.8) 189 (77.8)
     Postgraduate 176 (1.7) 5 (2.1)
    Marital status 14.56 <0.001
     Never married 3200 (30.6) 47 (19.3)
     Married 7031 (67.3) 189 (77.8)
     Widowed or divorced 217 (2.1) 7 (2.9)
    Childbirth 16.38 0.003
     0 3958 (37.9) 62 (25.5)
    Pregnancy 291 (2.8) 10 (4.1)
     1 4485 (42.9) 125 (51.4)
     2 1532 (14.7) 40 (16.5)
     ≥3 182 (1.7) 6 (2.5)
    Professional title 5.04 0.169
     Nurse 2545 (24.4) 52 (21.4)
     Senior nurse 4787 (45.8) 104 (42.8)
     Supervisor nurse 2647 (25.3) 71 (29.2)
     (Associate) professor of nursing 469 (4.5) 16 (6.6)
    Department 4.24 0.120
     Medical department 3165 (30.3) 79 (32.5)
     Surgery department 4455 (42.6) 88 (36.2)
     Others 2828 (27.1) 76 (31.3)
    Years of nursing experience/year 35.19 <0.001
     ≤5 3346 (32.0) 56 (23.0)
     6-10 3402 (32.6) 63 (25.9)
     11-20 2505 (24.0) 70 (28.8)
     ≥21 1195 (11.4) 54 (22.2)
    Nightshift/(times/month) 2.39 0.665
     0 2551 (24.4) 66 (27.2)
     1 424 (4.1) 13 (5.3)
     2-3 1022 (9.8) 23 (9.5)
     4-5 3030 (29.0) 64 (26.3)
     ≥6 3421 (32.7) 77 (31.7)
    Sleep/(h/d) 15.46 <0.001
     <6 h 388 (3.7) 20 (8.2)
     6-8 h 9506 (91) 216 (88.9)
     ≥8 h 554 (5.3) 7 (2.9)
    Complication 75.21 <0.001
     0 7726 (73.9) 123 (50.6)
     1 1828 (17.5) 70 (28.8)
     2 537 (5.1) 27 (11.1)
     3 357 (3.4) 23 (9.5)
    Foot injury history 50.52 <0.001
     No 5587 (53.5) 74 (30.5)
     Yes 4861 (46.5) 169 (69.5)
    Footwear type 10.01 0.007
     Nursing shoes 8785 (84.1) 186 (76.5)
     Crocs 1057 (10.1) 36 (14.8)
     Others 606 (5.8) 21 (8.6)
    Footwear material 7.87 0.049
     Real leather 1618 (15.5) 44 (18.1)
     Artificial leather 6774 (64.8) 140 (57.6)
     Cotton 173 (1.7) 8 (3.3)
     Plastics 1883 (18.0) 51 (21.0)
    Shape of the toebox 22.89 <0.001
     Pointed shoes 130 (1.2) 4 (1.6)
     Rounded toes 9018 (86.3) 194 (79.8)
     Square head shoes 1096 (10.5) 30 (12.3)
     Open toe shoes 204 (2.0) 15 (6.2)
    Footwear comfort 31.65 <0.001
     Very uncomfortable 131 (1.3) 13 (5.3)
     Uncomfortable 844 (8.1) 22 (9.1)
     General 3496 (33.5) 84 (34.6)
     Comfortable 4423 (42.3) 90 (37.0)
     Very comfortable 1554 (14.9) 34 (14.0)
    Frequency of changing into clean socks /(times/d) 13.14 0.041
     0 820 (7.8) 24 (9.9)
     1-2 8296 (79.4) 194 (80.2)
     3-5 1099 (10.5) 16 (6.6)
     ≥6 233 (2.2) 8 (3.3)
    下载: 导出CSV 
    | 显示表格
    表  3  护士足部重度疼痛的多因素logistic回归分析
    Table  3.  Multivariate logistic regression analysis of severe foot pain in nurses
    VariableβOR (95% CI)P
    Age 0.034 1.03 (1.02-1.05) 0.000
    Highest education achieved (secondary)
     Junior college −0.998 0.37 (0.16-0.87) 0.022
     Bachelor −0.710 0.49 (0.22-1.10) 0.085
     Postgraduate −0.408 0.67 (0.20-2.21) 0.506
    Footwear material (real leather)
     Artificial leather −0.170 0.84 (0.59-1.21) 0.355
     Cotton 0.938 2.56 (1.11-5.86) 0.027
     Plastics −0.135 0.87 (0.51-1.49) 0.621
    Footwear comfort (very uncomfortable)
     Uncomfortable −1.238 0.29 (0.14-0.60) 0.001
     General −1.121 0.33 (0.17-0.62) 0.001
     Comfortable −1.319 0.27 (0.14-0.51) 0.000
     Very comfortable −1.263 0.28 (0.14-0.57) 0.000
    Complication (0)
     1 0.635 1.89 (1.39-2.57) 0.000
     2 0.816 2.26 (1.45-3.52) 0.000
     3 0.906 2.47 (1.53-4.01) 0.000
    Foot injury history (no)
     Yes 0.731 2.08 (1.56-2.76) 0.000
     β: patial regression coefficient; OR: odds ratio; CI: confidence interval.
    下载: 导出CSV 
    | 显示表格

    基于多因素logistic回归分析结果及临床经验,成功建立了护士足部重度疼痛Nomograph预测列线图模型,每个预测指标的数值对应有相应的得分,concordance index(C-index)值为0.706(图1图2),其大于0.70说明有较高准确性,同时标准曲线与校准预测曲线贴合良好,以上均表示根据该模型得出的护士足部疼痛发生预测值与观察值符合度良好(图3)。

    图  1  护士足部重度疼痛的Nomograph预测模型列线图
    Figure  1.  Nomograph predicting severe foot pain in nurses
    图  2  Nomograph预测模型的特征曲线图
    Figure  2.  Feature curves of nomograph predicting severe foot pain in nurses
    图  3  Nomograph预测模型的校准曲线图
    Figure  3.  Calibration curve of nomograph predicting severe foot pain in nurses

    在这项研究中,共有3419名护士发生足部疼痛,发生率为31.98%,重度足部疼痛发生率为2.27%,低于MARSHALL等[11]关于成年人中有关重度足部疼痛发生率(6%)的调查结果。但由于测量工具、术语的主观性、文化、医疗保健系统以及工作环境的组织差异,本研究结果与以往的研究结果很难进行定量比较。本研究还发现在重度疼痛的部位描述中,脚掌和足跟区域的重度疼痛较脚背和脚趾间的重度疼痛更为常见。可能原因是随着年龄的增长、护士整体健康水平下降,脚掌和足跟部的脂肪垫萎缩和变薄,伴随着水分、胶原蛋白和弹性组织的流失,降低了对跟骨的减震能力和保护作用[12],易导致护士足部重度疼痛的发生。

    本研究建立并验证了一个可以预测护士足部重度疼痛的Nomograph预测模型。根据各个影响因素的回归系数大小,为不同影响因素赋分,通过相加得到总评分再进行函数转换,转变成可视化图形,使预测模型结果更直观,更加具有可读性,方便对护士足部重度疼痛预测结果进行解读。

    本研究充分考虑了以往研究中提到可能影响足痛的因素(如年龄、体质量、鞋的舒适性)[3-4,10],同时还考虑到夜班频率、足部疾病护理经验等护士职业相关因素,以及自我感知的整体健康水平、足部外伤史等护士健康相关因素。根据多因素logistic回归分析结果,预测会患有重度足部疼痛的护士人群的Nomograph模型主要由6个变量组成(年龄、学历、工作鞋材质、工作鞋舒适程度、足部外伤史、是否合并其他并发症)。

    此前已有多项研究证实年龄与足部疼痛有关。埃塞俄比亚[4]的一项研究表明,40岁及以上的护士患踝关节/足部疼痛的可能性是正常人的7.66倍。另一项在日本[3]的研究表明,年龄大于50岁的护士与踝足疼痛呈正相关。GATES等[13]基于国际人群的队列研究中发现,与 45 岁以上的参与者相比,年轻参与者(20~44岁)的足部疼痛发生率普遍随着年龄的增长而增加。分析其原因,可能是由于随着年龄的增长,皮肤会变得更硬、更干燥并失去弹性,慢慢发展成角化过度、跖骨痛或足跟痛等。另外,足部的软组织垫也表现出更大的刚度,在受压时会消耗更多的能量,并且在去除负荷后恢复更慢,行走时足底压力峰值会增加,导致容易出现足部疼痛[14]。因此随着年龄增长,护士发生足部重度疼痛的风险也不断增高。

    从数据中可以发现,相较于中专学历的护士,高中学历的护士足部重度疼痛发生率更低。原因可能是由于护士职业发展及人才培养的需要,学历较高的护士参与科室管理及科研等工作时间较多,直接从事的临床实践活动较低学历的护士更少,在病房行走及站立时长也较少。但除高中学历外,其他较高学历与中专学历比较,差异无统计学意义。

    研究结果显示相对于工作鞋材质为天然皮革的护士,工作鞋材质为棉质的护士足部重度疼痛发生的风险更高。可能因为柔软的材料虽能够改善足底压力但却会增加跖骨应力,而跖骨应力过大或异常是导致足部疼痛的主要原因之一[15]。鞋作为保护足部不受外部损伤的工具,也会因为不合脚等问题影响足部舒适度,破坏足部各部分生物力学功能的协调,可能造成足部重度疼痛的产生。运动生物力学研究在鞋类上的应用主要在于分析足部在不同运动状态下的受力情况以及与鞋的关系[16],穿鞋者所感知的舒适度是其最直观的评价,对于工作鞋的选择有重要的参考价值。

    足是人体维持直立姿态的支撑点,具有各种生物力学功能与特性。不仅能够支撑承重、吸收震荡、传递运动还具有杠杆作用[17]。这些复杂的功能需要依靠足部的各组成部分相互协调。足外伤是骨科常见疾病,严重创伤常伴有肌腱和骨骼的暴露,增加感染风险,影响足部功能预后。即使是轻度创伤,也可能会导致足部各个部分受力不均,影响步态平衡,被迫改变走路姿势,从而造成足部劳损及足部疼痛,进而增加护士发生足部重度疼痛的风险。

    本研究发现合并有其他疾病也是影响足部疼痛及其严重程度的独立危险因素,说明与护士整体健康相关的因素更容易导致护士发生足部重度疼痛。在问卷调查中,合并有其他并发症是指是否合并有人体八大系统慢性病(神经、内分泌、循环、运动、呼吸、消化、泌尿以及生殖)。有大量的证据表明足部疼痛与其他区域性身体疼痛之间存在密切关联[18-19]。例如类风湿性关节炎的滑膜炎症会影响足部的所有关节,导致疼痛加剧、足部功能下降和畸形发展[20];痛风患者在足部关节内和关节周围形成尿酸单钠(MSU)晶体,可能导致剧烈疼痛的急性发作[21]。此结果也与一项在受过教育的成年人中进行的足痛调查研究结果相似,该研究表明,存在任何一种疾病或多种疾病都与发生中度至重度足部疼痛有关[18]

    本研究通过对我国三级医院的护士足部重度疼痛现状进行了大样本的调查,结果发现3419名护士(31.98%)出现了足部疼痛,其中重度足部疼痛的发生率为2.27%。构建及验证了护士重度足部疼痛的Nomograph预测模型。临床上影响护士足部重度疼痛发生的危险因素多种多样,该列线图模型可能错过其他重要的危险变量,还需要进一步在临床上观察发现;同时本研究未能使用独立样本对构建的列线图模型进行外部验证,后续需要进行多中心、大样本量研究进一步验证本研究结论。

    *    *    *

    利益冲突 所有作者均声明不存在利益冲突

  • 图  1   护士足部重度疼痛的Nomograph预测模型列线图

    Figure  1.   Nomograph predicting severe foot pain in nurses

    图  2   Nomograph预测模型的特征曲线图

    Figure  2.   Feature curves of nomograph predicting severe foot pain in nurses

    图  3   Nomograph预测模型的校准曲线图

    Figure  3.   Calibration curve of nomograph predicting severe foot pain in nurses

    表  1   护士的临床特征及足部重度疼痛调查结果

    Table  1   Clinical features of the nurses covered in the study and the results of the severe foot pain survey

    Clinical featureVariableCase%
    Sex Male 275 2.57
    Female 10416 97.42
    Age/yr. 18-25 1953 18.26
    26-30 3464 32.40
    31-40 3958 37.02
    41-60 1316 12.30
    Body mass index/(kg/m2) <18.5 1345 12.58
    18.5-23.99 7429 69.48
    24-27.99 1566 14.64
    ≥28 351 3.32
    Education Secondary 122 1.14
    Junior college 2492 23.33
    Bachelor 7896 73.85
    Postgraduate 181 1.69
    Marital status Never married 3247 30.37
    Married 7220 67.53
    Widowed or divorced 224 2.10
    Childbirth 0 4020 37.60
    Pregnancy 301 2.82
    1 4610 43.12
    2 1572 14.70
    ≥3 188 1.76
    Department Medical department 3244 30.34
    Surgery department 4543 42.49
    Others 2904 27.16
    Professional title Nurse 2597 24.29
    Senior nurse 4891 45.74
    Supervisor nurse 2718 25.42
    (Associate) professor of nursing 485 4.53
    Years of nursing experience/year ≤5 3402 31.82
    6-10 3465 32.41
    11-20 2575 24.09
    ≥21 1249 11.68
    VAS 1-3 1929 56.42
    4-6 1247 36.47
    7-10 243 7.10
    Pain location Left sole 133 54.73
    Right sole 118 48.56
    Left heel 102 41.98
    Right heel 98 40.33
    Quality of pain Swelling pain 142 58.44
    Sourness and pain 160 65.84
    Stabbing pain 67 27.57
    下载: 导出CSV

    表  2   护士足部重度疼痛的单因素分析

    Table  2   Univariate analysis of severe foot pain in nurses

    VariableVAS 0-6
    (n=10448)/case (%) or $ \bar x \pm s $
    VAS 7-10
    (n=243)/case (%) or $ \bar x \pm s $
    t/χ2P
    Age/yr. 31.89±7.278 34.84±8.151 <0.001
    Body mass index/(kg/m2) 23.39±4.560 22.61±4.461 0.011
    Sex 0.51 0.473
     Male 267 (2.6) 8 (3.3)
     Female 10181 (97.4) 235 (96.7)
    Highest education achieved 11.18 0.011
     Secondary 115 (1.1) 7 (2.9)
     Junior college 2450 (23.4) 42 (17.3)
     Bachelor 7707 (73.8) 189 (77.8)
     Postgraduate 176 (1.7) 5 (2.1)
    Marital status 14.56 <0.001
     Never married 3200 (30.6) 47 (19.3)
     Married 7031 (67.3) 189 (77.8)
     Widowed or divorced 217 (2.1) 7 (2.9)
    Childbirth 16.38 0.003
     0 3958 (37.9) 62 (25.5)
    Pregnancy 291 (2.8) 10 (4.1)
     1 4485 (42.9) 125 (51.4)
     2 1532 (14.7) 40 (16.5)
     ≥3 182 (1.7) 6 (2.5)
    Professional title 5.04 0.169
     Nurse 2545 (24.4) 52 (21.4)
     Senior nurse 4787 (45.8) 104 (42.8)
     Supervisor nurse 2647 (25.3) 71 (29.2)
     (Associate) professor of nursing 469 (4.5) 16 (6.6)
    Department 4.24 0.120
     Medical department 3165 (30.3) 79 (32.5)
     Surgery department 4455 (42.6) 88 (36.2)
     Others 2828 (27.1) 76 (31.3)
    Years of nursing experience/year 35.19 <0.001
     ≤5 3346 (32.0) 56 (23.0)
     6-10 3402 (32.6) 63 (25.9)
     11-20 2505 (24.0) 70 (28.8)
     ≥21 1195 (11.4) 54 (22.2)
    Nightshift/(times/month) 2.39 0.665
     0 2551 (24.4) 66 (27.2)
     1 424 (4.1) 13 (5.3)
     2-3 1022 (9.8) 23 (9.5)
     4-5 3030 (29.0) 64 (26.3)
     ≥6 3421 (32.7) 77 (31.7)
    Sleep/(h/d) 15.46 <0.001
     <6 h 388 (3.7) 20 (8.2)
     6-8 h 9506 (91) 216 (88.9)
     ≥8 h 554 (5.3) 7 (2.9)
    Complication 75.21 <0.001
     0 7726 (73.9) 123 (50.6)
     1 1828 (17.5) 70 (28.8)
     2 537 (5.1) 27 (11.1)
     3 357 (3.4) 23 (9.5)
    Foot injury history 50.52 <0.001
     No 5587 (53.5) 74 (30.5)
     Yes 4861 (46.5) 169 (69.5)
    Footwear type 10.01 0.007
     Nursing shoes 8785 (84.1) 186 (76.5)
     Crocs 1057 (10.1) 36 (14.8)
     Others 606 (5.8) 21 (8.6)
    Footwear material 7.87 0.049
     Real leather 1618 (15.5) 44 (18.1)
     Artificial leather 6774 (64.8) 140 (57.6)
     Cotton 173 (1.7) 8 (3.3)
     Plastics 1883 (18.0) 51 (21.0)
    Shape of the toebox 22.89 <0.001
     Pointed shoes 130 (1.2) 4 (1.6)
     Rounded toes 9018 (86.3) 194 (79.8)
     Square head shoes 1096 (10.5) 30 (12.3)
     Open toe shoes 204 (2.0) 15 (6.2)
    Footwear comfort 31.65 <0.001
     Very uncomfortable 131 (1.3) 13 (5.3)
     Uncomfortable 844 (8.1) 22 (9.1)
     General 3496 (33.5) 84 (34.6)
     Comfortable 4423 (42.3) 90 (37.0)
     Very comfortable 1554 (14.9) 34 (14.0)
    Frequency of changing into clean socks /(times/d) 13.14 0.041
     0 820 (7.8) 24 (9.9)
     1-2 8296 (79.4) 194 (80.2)
     3-5 1099 (10.5) 16 (6.6)
     ≥6 233 (2.2) 8 (3.3)
    下载: 导出CSV

    表  3   护士足部重度疼痛的多因素logistic回归分析

    Table  3   Multivariate logistic regression analysis of severe foot pain in nurses

    VariableβOR (95% CI)P
    Age 0.034 1.03 (1.02-1.05) 0.000
    Highest education achieved (secondary)
     Junior college −0.998 0.37 (0.16-0.87) 0.022
     Bachelor −0.710 0.49 (0.22-1.10) 0.085
     Postgraduate −0.408 0.67 (0.20-2.21) 0.506
    Footwear material (real leather)
     Artificial leather −0.170 0.84 (0.59-1.21) 0.355
     Cotton 0.938 2.56 (1.11-5.86) 0.027
     Plastics −0.135 0.87 (0.51-1.49) 0.621
    Footwear comfort (very uncomfortable)
     Uncomfortable −1.238 0.29 (0.14-0.60) 0.001
     General −1.121 0.33 (0.17-0.62) 0.001
     Comfortable −1.319 0.27 (0.14-0.51) 0.000
     Very comfortable −1.263 0.28 (0.14-0.57) 0.000
    Complication (0)
     1 0.635 1.89 (1.39-2.57) 0.000
     2 0.816 2.26 (1.45-3.52) 0.000
     3 0.906 2.47 (1.53-4.01) 0.000
    Foot injury history (no)
     Yes 0.731 2.08 (1.56-2.76) 0.000
     β: patial regression coefficient; OR: odds ratio; CI: confidence interval.
    下载: 导出CSV
  • [1]

    SHEIKHZADEH A, GORE C, ZUCKERMAN J D, et al. Perioperating nurses and technicians' perceptions of ergonomic risk factors in the surgical environment. Applied Ergonomics,2008,40(5): 833–839. DOI: 10.1016/j.apergo.2008.09.012

    [2]

    AMIN N A, NORDIN R, FATT Q K, et al. Relationship between Psychosocial Risk Factors and Work-Related Musculoskeletal Disorders among Public Hospital Nurses in Malaysia. Ann Occup Environ Med,2014,26(8): 23. DOI: 10.1186/s40557-014-0023-2

    [3]

    TOJO M, YAMAGUCHI S, AMANO N, et al. Prevalence and associated factors of foot and ankle pain among nurses at a university hospital in Japan: A cross-sectional study. J Occup Health,2018,60(2): 132–139. DOI: 10.1539/joh.17-0174-OA

    [4]

    GETIE K, KAHSAY G, KASSAW A, et al. Ankle and Foot Pain and Associated Factors Among Nurses at Ayder Comprehensive Specialized Hospital, Mekelle, Ethiopia: Cross-Sectional Study. J Pain Res,2021,14: 83–92. DOI: 10.2147/JPR.S283580

    [5]

    BHATTACHARYA A. Costs of occupational musculoskeletal disorders (MSDs) in the United States. Int J Ind Ergon,2014,44(3): 448–454. DOI: 10.1002/14651858.CD008570.pub3

    [6]

    STORHEIM K, ZWART J A. Musculoskeletal disorders and the Global Burden of Disease study. Ann Rheum Dis,2014,73(6): 949–950. DOI: 10.1136/annrheumdis-2014-205327

    [7]

    MITTENDORFER-RUTZ E, DORNER T E. Socio-economic factors associated with the 1-year prevalence of severe pain and pain-related sickness absence in the Austrian population. Wien Klin Wochenschr,2018,130(1-2): 4–13. DOI: 10.1007/s00508-017-1222-y

    [8]

    WU C L, HUNG Y L, WANG Y R, et al. Pain prevalence in hospitalized patients at a tertiary academic medical center: Exploring severe persistent pain. PLoS One,2020,15(12): e0243574. DOI: 10.1371/journal.pone.0243574

    [9]

    DENG L X, PATEL K, MIASKOWSKI C, et al. Prevalence and Characteristics of Moderate to Severe Pain among Hospitalized Older Adults. J Am Geriatr Soc,2018,66(9): 1744–1751. DOI: 10.1111/jgs.15459

    [10]

    NEALY R, MCCASKILL C, CONAWAY M R, et al. The aching feet of nurses: an exploratory study. Medsurg Nurs,2012,21(6): 354–359.

    [11]

    MMRSHALL M, BLAGOJEXIC-BUCKNALL M, RATHOD-MISTRY T, et al. Identifying long-term trajectories of foot pain severity and potential prognostic factors: a population-based cohort study. Arthritis Care Res (Hoboken),2023,75(5): 1123–1131. DOI: 10.1002/acr.24823

    [12]

    NEUFELD S K, CERRATO R. Plantar fasciitis: evaluation and treatment. J Am Acad Orthop Surg,2008,16(6): 338–346. DOI: 10.5435/00124635-200806000-00006

    [13]

    GATES L S, ARDEN N K, HANNAN M T, et al. Prevalence of foot pain across an international consortium of population-based cohorts. Arthritis Care Res (Hoboken),2019,71(5): 661–670. DOI: 10.1002/acr.23829

    [14]

    DUENAS L, AMAL-GOMEZ A, APARICIO I, et al. Influence of age, gender and obesity on pressure discomfort threshold of the foot: a cross-sectional study. Clin Biomech,2021,82: 105252. DOI: 10.1016/j.clinbiomech.2020.105252

    [15] 林田. 基于生物力学的鞋舒适性评价和设计. 福州: 福州大学, 2014.
    [16] 丘理. 生物力学技术在制鞋领域的应用. 中国皮革,2004(2): 126–127. DOI: 10.13536/j.cnki.issn1001-6813.2004.10.010
    [17] 陶凯,王冬梅,王成焘,等. 基于三维有限元静态分析的人体足部生物力学研究. 中国生物医学工程学报,2007(5): 763–766.
    [18]

    HENDRY G J, FENOCCHI L, WOODBUM J, et al. Foot pain and foot health in an educated population of adults: results from the Glasgow Caledonian University Alumni Foot Health Survey. J Foot Ankle Res,2018,11(1): 48. DOI: 10.1186/s13047-018-0290-1

    [19]

    HILL C L, GILL T K, MENZ H B, et al. Prevalence and correlates of foot pain in a population-based study: the North West Adelaide health study. J Foot Ankle Res,2008,1(1): 2. DOI: 10.1186/1757-1146-1-2

    [20]

    REINA-BUENO M, MUNUERA-MARTINEZ P V, PEREZ-GARCIA S, et al. Foot pain and morphofunctional foot disorders in patients with rheumatoid arthritis: a multicenter cross-sectional study. Int J Environ Res Public Health,2021,18(9): 5042. DOI: 10.3390/ijerph18095042

    [21]

    STEWART S, DALBETH N, OTTER S, et al. Clinically-evident tophi are associated with reduced muscle force in the foot and ankle in people with gout: a cross-sectional study. J Foot Ankle Res,2017,10(1): 25. DOI: 10.1186/s13047-017-0207-4

  • 期刊类型引用(1)

    1. 吉莉,卢芳燕,王华芬,戴燕红,卫建华. 护士足踝部职业性肌肉骨骼疾患研究进展. 护理研究. 2024(23): 4315-4319 . 百度学术

    其他类型引用(0)

图(3)  /  表(3)
计量
  • 文章访问数:  1219
  • HTML全文浏览量:  184
  • PDF下载量:  18
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-09-18
  • 修回日期:  2023-04-13
  • 网络出版日期:  2023-05-19
  • 发布日期:  2023-05-19

目录

/

返回文章
返回