欢迎来到《四川大学学报(医学版)》 2025年4月12日 星期六

青春期抑郁样行为小鼠脑组织外泌体miRNA测序分析

曾琪, 廖婧, 冉柳毅, 石磊, 陈羽佳, 张晨钰, 向娇娇, 洪素, 况利

曾琪, 廖婧, 冉柳毅, 等. 青春期抑郁样行为小鼠脑组织外泌体miRNA测序分析[J]. 四川大学学报(医学版), 2023, 54(2): 316-321. DOI: 10.12182/20230360205
引用本文: 曾琪, 廖婧, 冉柳毅, 等. 青春期抑郁样行为小鼠脑组织外泌体miRNA测序分析[J]. 四川大学学报(医学版), 2023, 54(2): 316-321. DOI: 10.12182/20230360205
ZENG Qi, LIAO Jing, RAN Liu-yi, et al. Sequencing Analysis of miRNAs in Brain-Derived Exosomes of Adolescent Mice With Depression-Like Behaviors[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(2): 316-321. DOI: 10.12182/20230360205
Citation: ZENG Qi, LIAO Jing, RAN Liu-yi, et al. Sequencing Analysis of miRNAs in Brain-Derived Exosomes of Adolescent Mice With Depression-Like Behaviors[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(2): 316-321. DOI: 10.12182/20230360205

青春期抑郁样行为小鼠脑组织外泌体miRNA测序分析

基金项目: 国家自然科学基金(No. 81971286、No. 82101615)和重庆市自然科学基金面上项目(No. cstc2021jcyj-msxmX0349)资助
详细信息
    通讯作者:

    况利: E-mail:kuangli0308@163.com

Sequencing Analysis of miRNAs in Brain-Derived Exosomes of Adolescent Mice With Depression-Like Behaviors

More Information
  • 摘要:
      目的  探索青春期抑郁样行为小鼠脑组织外泌体微RNA(microRNA, miRNA)差异表达情况。
      方法  实验组为慢性社交挫败实验应激模型(chronic social defeat stress, CSDS)敏感型青春期小鼠,采用糖水偏好和旷场实验评估抑郁样行为。使用超速离心法提取脑组织外泌体,经透射电子显微镜、纳米流式检测技术以及蛋白质印记对外泌体形态、粒径大小和表面标志蛋白进行鉴定。采用高通量测序技术评估实验组和对照组小鼠脑组织外泌体miRNAs表达,基于生物信息学进行GO和KEGG通路富集分析。
      结果  外泌体颗粒大小在50~100 nm之间、呈典型圆盘状的囊泡结构,检测到外泌体阳性蛋白TSG101和Syntenin。CSDS诱导抑郁样行为的青春期小鼠脑组织外泌体中有13个miRNA显著上调,4个miRNA显著下调,差异表达的miRNA在PI3K-Akt信号通路、轴突导向以及缺氧反应等显著富集。
      结论  本研究发现脑组织外泌体miRNA可能参与胰岛素抵抗、神经可塑性、缺氧反应等生物过程调控大脑功能,从而产生抑郁样行为。

     

    Abstract:
      Objective  To explore the differential expression of microRNAs (miRNAs) in brain-derived exosomes (BDEs) of adolescent mice with depression-like behavior.
      Methods  The experimental group consisted of susceptible adolescent mice exposed to chronic social defeat stress (CSDS), and sucrose preference test (SPT) and open field test (OFT) were performed to evaluate their depression-like behaviors. BDEs were extracted by ultracentrifugation (UC). The morphology, particle size, and surface marker proteins of BDEs were examined by transmission electron microscopy, nano-flow cytometry and Western blot. The expression of miRNA in BDEs was evaluated by high-throughput RNA sequencing. GO enrichment analysis and KEGG pathway enrichment analysis were carried out based on bioinformatics.
      Results  The particle size of BDEs ranged between 50 to 100 nm and they displayed a typical disc-shaped vesicle structure. TSG101 and syntenin, the exosome-positive proteins, were detected. In the BDEs of mice with depression-like behaviors induced by CSDS, 13 miRNAs were significantly upregulated and 4 miRNAs were significantly downregulated. Go and KEGG analysis showed that differentially expressed miRNAs were significantly enriched in PI3K-Akt signaling pathway, axonal guidance, and hypoxic response.
      Conclusion  It was found in this study that exosomal miRNAs in brain tissue might be involved in such biological processes as insulin resistance, neuroplasticity, and hypoxic response, thereby regulating brain functions and causing depression-like behaviors.

     

  • 重度抑郁症(MDD)是一种常见而严重的精神疾病,最近的一项荟萃分析发现,与20年前相比,近10年儿童青少年抑郁症流行率增加了13个百分点,预估当前全球34%的10~19岁青少年具有抑郁症的罹患风险[1]。目前MDD诊断仍主要依靠于症状学表现,缺乏客观有效的生物标志物。和成人相比,儿童青少年抑郁症状不典型,且容易与行为障碍、多动症等疾病混淆,导致儿童青少年抑郁症的识别难度进一步加大。因此探讨抑郁症的发病机制,明确客观生物标志物对儿童青少年抑郁症的诊断和治疗尤为重要。

    学界普遍认为表观遗传学能够更好地解释抑郁症遗传和环境之间的相互作用。表观遗传学认为在DNA不变的条件下物种可出现不同表型,即外界环境可导致相同基因出现不同的表达[2]。微RNA(miRNA)是表观遗传学分子之一,是长度约22 nt的非编码单链RNA,通过阻碍mRNA的合成调控蛋白表达。大量临床和基础研究证明了miRNA和抑郁症有关[3],并且在神经递质-内分泌和神经可塑性等抑郁发病机制假说中都发现了miRNA的参与作用[4-5],miRNA是目前抑郁症发病机制研究中重要的分子之一。

    miRNA在血液中会被迅速降解,但可稳定存在于外泌体内,外泌体是40~100 nm大小的小囊泡,可穿过血脑屏障,由包括神经元在内的所有类型的细胞分泌,内含很多RNA和蛋白质,miRNA是其富集最多的分子之一[6]。越来越多的研究发现外泌体miRNA和抑郁症的关系[7]。本团队前期报道了青少年血清外泌体miRNA的研究[8],揭示了血清来外泌体差异表达的miRNA(如miR-450a-2-3p等)和抑郁症之间的关系。作为神经精神类疾病,抑郁症的生物标志物大多存在于不容易获得的脑组织中,而目前抑郁症研究多为外周血清来源的外泌体miRNA,探究脑组织外泌体(BDEs)中miRNA的相关研究较少,相比血清外泌体,BDEs也能更好地反映大脑功能[9]。因此本研究旨在从脑组织层面探索外泌体miRNA表达情况,利用生物信息学探索慢性社交挫败应激模型(CSDS)诱导抑郁样行为小鼠BDEs中差异表达的miRNA相关靶基因的生物过程和信号通路,为理解抑郁症的分子机制和探索生物标志物提供参考。

    5周龄雄性C57BL/6J小鼠,等级SPF级。8~12 月龄雄性CD-1 小鼠,均购自维通利华公司。

    BS购自上海Sangon Biotech公司(货号为E607008),0.45 μm过滤膜购于Millipore,Dispase Ⅱ和Ⅰ型胶原酶购自美国Sigma公司(货号为D4693和C9407),FITCMouseAnti-Human CD9、FITCMouseAnti-Human CD63、FITCMouseAnti-Human CD81购自美国BD公司(货号为555371、556019、551108),小型冷冻离心机购自美国Beckman公司(型号为Microfuge 20R),超速离心机和透射电镜购自日本Hitachi公司(型号为CP100MX和HT-7700),粒径分析仪购自中国青岛NanoFCM公司(型号为N30E)。

    正式实验前,C57BL/6J小鼠进行7 d实验室环境适应,期间自由进食进水,造模前将小鼠随机分为CSDS干预组和无干预组(n=15),由CSDS构建小鼠抑郁样行为。C57BL/6J小鼠放入特定鼠笼,由布满小孔的透明隔板将鼠笼一分为二,将具有攻击性的 CD-1 小鼠和C57BL/6J小鼠分别饲养于隔板两侧,彼此均不可穿过小孔,但能通过小孔接触气味。实验时取出隔板使两侧小鼠接触,期间CD-1 小鼠会追逐攻击 C57BL/6J小鼠,5 min 后将两鼠隔开,每日刺激 1 次,第二天更换C57BL/6J小鼠以保证其每天接受不同CD-1小鼠刺激。连续刺激10 d。无干预组小鼠常规饲养,自由进食进水。

    社交互动测试(SIT)用于评估小鼠CSDS干预后的社交回避行为,具体为将40 cm×40 cm×40 cm旷场划分5×5个格子,CD-1鼠笼(9.5 cm×9.5 cm×6.5 cm)固定于一侧中央,其所处周围2×3格子定为社交互动区。测试分两阶段进行,每阶段4 min:第1阶段,社交互动区内的鼠笼不放置CD-1鼠,第2阶段,鼠笼内放置1 只 CD-1鼠。将C57BL/6J小鼠放置于旷场中,使用SMART软件(3.0版本)记录两阶段中C57小鼠在社交互动区时间和运动轨迹,计算社交互动指数(SI):第二阶段在互动区的时间/第一阶段在互动区的时间。SI<1的小鼠定义为敏感型,SI>1的小鼠定义为抵抗型。更换小鼠期间使用酒精消除气味影响。

    根据社交互动测试结果,将干预组中SI<1的C57BL/6J小鼠作为实验组(n=10),无干预组中SI>1的C57BL/6J小鼠作为对照组(n=8),进行后续行为学实验评估抑郁行为。

    蔗糖偏好测试(SPT)实验前进行24 h禁食禁水,后给予小鼠1瓶纯水和1瓶1%浓度的蔗糖水,12 h后测量纯水和蔗糖水消耗体积并计算糖水偏好。糖水偏好百分比=糖水消耗量/(糖水消耗量+纯水消耗量)×100%。

    旷场测试(OFT)采用40 cm×40 cm×40 cm旷场,检测过程中保持房间黑暗和安静,将旷场底面平均分为25个格子,中央9个格子设置为中央区,将小鼠旷场中,随后记录6 min内中心区活动时间和总运动距离。每完成1只小鼠的检测后清洁场箱并使用酒精消除气味。

    小鼠颈椎脱臼处死后,快速断头剥离脑组织,每10 mL脑组织样本中加入2.4 U/mL的DispaseⅡ,4 ℃消化过夜,吸去DispaseⅡ,PBS冲洗2次,将组织样本置于含PBS的10 cm细胞培养皿中,用眼科剪刀将组织剪成约1 mm3大小的组织碎片,置于50 mL离心管中,管内加入5倍体积的0.2% Ⅰ型胶原酶溶液,在恒温培养箱中,37 ℃轻微震荡消化2~3 h至细胞悬液呈乳浊状,用含10%无外泌体血清的DMEM培养基终止消化,2000 r/min离心5 min,收集上清。采用超速离心法提取外泌体:将上述组织上清液先后在2000×g下离心30 min以及10000×g离心45 min,将上清液于0.45 μm滤膜过滤,收集过滤液,以100000×g超速离心70 min。将沉淀在预冷的PBS重悬后,以100000×g再次超速离心70 min,收集外泌体。上述操作均在4 ℃条件下进行。经透射电子显微镜(TEM)、纳米流式检测技术(NanoFCM)以及Western blot对外泌体形态、粒径大小和表面标志蛋白进行鉴定。

    使用TRIzol法提取外泌体中的总RNA,后续进行小RNA cDNA文库构建以及llumina平台测序(上海天昊生物科技有限公司)。对差异表达miRNA进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路功能富集分析。

    蛋白-蛋白相互作用(PPI)网络的构建:使用miRanda和RNAhybrid分别预测miRNA靶基因并取交集,通过String数据库导出绘制PPI,采用cytoscape软件中的degree插件筛选关键基因(hub gene)。

    数据以$ \bar x \pm s $表示,两两比较采用独立样本t检验,P<0.05为差异有统计学意义。使用Deseq2软件分析组间基因的差异表达,筛选标准为:P<0.05 且|log2 (fold change) | >1。

    采用旷场实验和糖水偏好实验检测小鼠抑郁样行为,造模前蔗糖偏好比无统计学意义。造模后,实验组糖水偏好百分比、旷场实验中心区域的总时间以及总距离均值降低(P<0.05)。见表1

    表  1  旷场实验和糖水偏好实验结果
    Table  1.  Findings for the open field test and the sucrose preference test
    GroupnThe total moving
    distance/cm
    Sucrose preference rate/%
    AtferBefore
    Control 8 2814.9±407.5 73.5±5.9 75.2±7.8
    CSDS 10 2010.2±310.8** 58.3±1.4* 69.3±9.9
     * P<0.05, ** P<0.01, vs. control group.
    下载: 导出CSV 
    | 显示表格

    透射电镜成像可见外泌体呈典型圆盘状的囊泡结构(图1A),外泌体颗粒大小在50~100 nm之间(图1B),Western blot检测到外泌体阳性蛋白TSG101和Syntenin的表达,Calnexin为外泌体阴性蛋白,在BDEs中未检测到(图1C)。

    图  1  外泌体形态和特征
    Figure  1.  The morphology and characteristics of extracted exosomes
    A: transmission electron micrographic image; B: particle size distribution; C: Western blot.

    采用Deseq2软件分析两组的差异表达基因并绘制差异miRNA火山图和聚类热图(图2)。共筛选出17个差异miRNA(表2),其中13个上调(miR-210-5p、miR-143-5p、miR-574-5p等);4个下调(miR-551b-3p、let-7a-2-3p等)。

    图  2  脑组织外泌体差异miRNA分析
    Figure  2.  Analysis of differential miRNAs in BDEs
    A: volcano plot; B: heat map.
    表  2  差异表达的候选miRNA
    Table  2.  Differentially-expressed candidate miRNAs
    IDlog2 (fold change)PUp/down
    mmu-miR-7080-3p 2.485707101 0.019381373 Up
    mmu-miR-486a-3p 1.205495517 0.00441368 Up
    mmu-miR-5620-5p 1.852095795 0.022432329 Up
    mmu-miR-7024-5p 3.534310036 0.041286064 Up
    mmu-miR-6952-3p 1.605462539 0.04345474 Up
    mmu-miR-3102-5p 2.453593094 0.049271691 Up
    mmu-miR-574-5p 1.341208546 0.020793102 Up
    mmu-miR-699 9-5p 4.550040684 0.004992145 Up
    mmu-miR-1970-5p 1.007946106 0.019384408 Up
    mmu-miR-210-5p 2.508863163 0.028459766 Up
    mmu-miR-486b-3p 1.205495517 0.00441368 Up
    mmu-miR-143-5p 1.919805146 0.036728297 Up
    mmu-miR-328-5p 1.065070007 0.03724532 Up
    mmu-miR-551b-3p −1.674702257 0.044018453 Down
    mmu-miR-6988-3p −2.02529471 0.007271901 Down
    mmu-miR-1264-3p −1.076857971 0.000553348 Down
    mmu-let-7a-2-3p −1.714683354 0.026563315 Down
    下载: 导出CSV 
    | 显示表格

    靶基因GO分析发现本研究差异表达的miRNA主要参与的生物过程分包括缺氧反应、Ras蛋白信号转导;细胞组成包括生长锥、轴突、突触囊泡;分子功能包括GTP酶活性、核苷结合(图3A)。如图3B所示,KEGG分析发现差异表达miRNA主要参与的信号通路包括PI3K-Akt信号通路、轴突导向等。图3C为数据库预测与miRNA相关性排名前20的靶基因蛋白互作图,其中关键基因有ATK1、Gdi1、DLG4和Ptpn11等。

    图  3  靶基因GO功能注释、KEGG富集分析和蛋白-蛋白相互作用网络
    Figure  3.  Distribution of the enriched GO function of the target genes, KEGG enrichment analysis results, and protein-protein interaction network
    A: The green bars in the figure represent the size of the P value, the longer the line, the larger and less significant the P value. B: The red and blue bar colors represent the level of P value, and the larger the -log10 Q value, the smaller the P value, and the higher the enrichment degree of differentially-expressed miRNAs in this KEGG pathway. C: The darker the red color in the top twenty hub genes, the more critical it is. Green represents non-critical genes.

    越来越多研究发现表观遗传学机制在环境压力下导致抑郁症中的作用[10],儿童青春期人群容易受到周围环境影响,研究发现这些早期生活压力和miRNAs表达有关[11]。虽然压力导致抑郁症的具体机制尚未明确,有研究认为,在压力应激状态下,大脑会引发缺氧、糖代谢障碍从而影响神经可塑性导致抑郁样表现[12-13],而脑组织外泌体内miRNA在此过程中作用尚不清楚。CSDS是模拟人类处于压力状态的模型,能模仿人类应激反应,并能诱导出小鼠的抑郁样行为[14]。本研究旨在脑组织外泌体层面探索miRNA和抑郁症的关系,结果发现CSDS干预后小鼠的行为学测试指标明显低于对照组,使用高通量测序找到差异表达的miRNA,发现有13个miRNA表达水平显著上调(miR-210-5p、miR-574-5p、miR-143-5p等),4个miRNA(miR-551b-3p、let-7a-2-3p等)表达显著下调。充足的氧气对大脑发挥正常功能至关重要,有研究发现焦虑和抑郁障碍的特征是经缺氧诱导因子(HIF)途径出现脑氧代谢及其组成部分的改变[15]。miR-143-5p被发现可以下调缺氧诱导因子(HIF-1α)的表达[16], HIF-1α是缺氧反应中的重要因子,有研究对怀孕的小鼠进行缺氧干预,其子鼠会出现抑郁样行为,并在其海马脑组织发现中HIF-1α表达升高,提示HIF-1α表达异常可能和抑郁症状有关[17]。miR-210-5p也曾被报道在缺氧条件下表达上调[18]

    此外,miR-574-5p 和miR-143-5p曾被报道参与了胰岛素抵抗作用[19-20]。胰岛素抵抗是一种由胰岛素敏感度降低导致血糖上升的糖代谢障碍,研究发现它会促进神经炎症、减少神经发生,导致认知障碍[21]。越来越多研究发现胰岛素抵抗和抑郁症有关:一项大型荟萃分析发现急性抑郁症患者的胰岛素抵抗指数明显升高[22]。磷脂酰肌醇3-激酶(PI3K-Akt)信号通路是本次研究结果中靶基因富集通路之一,参与增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节,其下游靶点是哺乳动物雷帕霉素靶蛋白(mTOR)。PI3K-AKT-mTOR是经典的响应胰岛素信号的通路[23]。综上所述,本研究发现抑郁小鼠脑组织外泌体内miR-210-5p、miR-574-5p 和miR-143-5p等差异表达基因可能参与作用于缺氧反应、糖类代谢障碍过程以及PI3K-Akt信号通路。

    靶基因GO和KEGG富集分析发现,差异表达miRNA的靶基因主要参与的细胞组成包括生长锥、极化生长、远端轴突等,并参与轴突导向等信号通路,提示脑组织外泌体内差异miRNA可能在抑郁症神经可塑性机制中有重要作用。最近一项研究通过比较应激模型和MDD患者之间的转录特征,发现轴突导向信号通路是所有应激模型和MDD患者共有的富集途径[24]。情绪、认知和学习等高级大脑功能依靠于神经元通过突触连接形成神经回路。轴突导向(axon guidance)在功能神经回路形成过程中具有重要作用,是神经元发出轴突,在预先设定的位置形成突触的过程。一些脑组织中的miRNA被发现通过参与轴突引导调节神经生发过程[25]。此外,生长锥是轴突导向中的一个重要结构,它位于轴突的尖端,向外部突出丝状伪足,表面富含不同的感觉器和受体,通过探测胞外环境中的信号,从而指引轴突的生长方向[26]

    通过构建PPI网络,发现排名靠前的靶基因中ATK1、Gdi1、DLG4和Ptpn11等都曾被报道和抑郁症有关,其中可能通过神经可塑性机制、糖代谢机制等发生作用。有研究发现ATK1多态性与抑郁症患者的抑郁严重程度以及自杀企图有关[27]。Gdi1则可以通过介导糖酵解过程调控神经发育[28]。DLG4和Ptpn11与神经发育以及突触可塑性有关[29-30],其中DLG4可编码突触后密度蛋白95(PSD-95),PSD-95是突触后致密区(PSD)的支架分子之一,PSD见于中枢神经系统所有轴突-树突的突触后膜上,是一层均匀而致密的物质,是神经信息传递的重要结构基础,在学习、记忆和突触可塑性等生理过程中有重要作用[31]

    综上所述,本次分析结果中,通过CSDS诱导出抑郁样行为的小鼠的BEDs中的差异miRNA可能与缺氧反应、糖代谢过程以及神经突触可塑性有关。基于本课题组前期在儿童青少年血清来源的外泌体miRNA的生物信息学研究,虽然在BEDs内没有发现和血清外泌体内有相同miRNA的差异表达,但在神经突触等信号等通路中具有相同的富集表现,两种不同外泌体中miRNA具体作用机制仍需要进一步探讨。本研究虽然发现了抑郁模型小鼠BEDs中差异miRNA和靶基因,仍然存在一定的局限性,缺乏实验验证本研究结果,本课题组也将在未来研究中进行相关实验,进一步更好地解释外泌体miRNA作用于抑郁症的机制。

    *    *    *

    利益冲突 所有作者均声明不存在利益冲突

  • 图  1   外泌体形态和特征

    Figure  1.   The morphology and characteristics of extracted exosomes

    A: transmission electron micrographic image; B: particle size distribution; C: Western blot.

    图  2   脑组织外泌体差异miRNA分析

    Figure  2.   Analysis of differential miRNAs in BDEs

    A: volcano plot; B: heat map.

    图  3   靶基因GO功能注释、KEGG富集分析和蛋白-蛋白相互作用网络

    Figure  3.   Distribution of the enriched GO function of the target genes, KEGG enrichment analysis results, and protein-protein interaction network

    A: The green bars in the figure represent the size of the P value, the longer the line, the larger and less significant the P value. B: The red and blue bar colors represent the level of P value, and the larger the -log10 Q value, the smaller the P value, and the higher the enrichment degree of differentially-expressed miRNAs in this KEGG pathway. C: The darker the red color in the top twenty hub genes, the more critical it is. Green represents non-critical genes.

    表  1   旷场实验和糖水偏好实验结果

    Table  1   Findings for the open field test and the sucrose preference test

    GroupnThe total moving
    distance/cm
    Sucrose preference rate/%
    AtferBefore
    Control 8 2814.9±407.5 73.5±5.9 75.2±7.8
    CSDS 10 2010.2±310.8** 58.3±1.4* 69.3±9.9
     * P<0.05, ** P<0.01, vs. control group.
    下载: 导出CSV

    表  2   差异表达的候选miRNA

    Table  2   Differentially-expressed candidate miRNAs

    IDlog2 (fold change)PUp/down
    mmu-miR-7080-3p 2.485707101 0.019381373 Up
    mmu-miR-486a-3p 1.205495517 0.00441368 Up
    mmu-miR-5620-5p 1.852095795 0.022432329 Up
    mmu-miR-7024-5p 3.534310036 0.041286064 Up
    mmu-miR-6952-3p 1.605462539 0.04345474 Up
    mmu-miR-3102-5p 2.453593094 0.049271691 Up
    mmu-miR-574-5p 1.341208546 0.020793102 Up
    mmu-miR-699 9-5p 4.550040684 0.004992145 Up
    mmu-miR-1970-5p 1.007946106 0.019384408 Up
    mmu-miR-210-5p 2.508863163 0.028459766 Up
    mmu-miR-486b-3p 1.205495517 0.00441368 Up
    mmu-miR-143-5p 1.919805146 0.036728297 Up
    mmu-miR-328-5p 1.065070007 0.03724532 Up
    mmu-miR-551b-3p −1.674702257 0.044018453 Down
    mmu-miR-6988-3p −2.02529471 0.007271901 Down
    mmu-miR-1264-3p −1.076857971 0.000553348 Down
    mmu-let-7a-2-3p −1.714683354 0.026563315 Down
    下载: 导出CSV
  • [1]

    SHOREY S, ESPERANZA DEBBY E D, WONG C H J. Globalprevalence of depression and elevated depressivesymptoms among adolescents: a systematic review and meta-analysis. Br J Clin Psychol,2021,61(2): 287–305. DOI: 10.1111/bjc.12333

    [2]

    WANG Y, CHEN Z P, HU H, et al. Sperm microRNAs confer depression susceptibility to offspring. Sci Adv,2021,7(7): eabd7605. DOI: 10.1126/sciadv.abd7605

    [3]

    ZHOU L, ZHU Y, CHEN W, et al. Emerging roleofmicroRNAs in major depressive disorder and its implication on diagnosis and therapeutic response. J Affect Disord,2021,286: 80–86. DOI: 10.1016/j.jad.2021.02.063

    [4]

    DULCIS D, LIPPI G, STARK C J, et al. Neurotransmitter switching regulated by miRNAs controls changes in social preference. Neuron,2017,95(6): 1319–1333.e5. DOI: 10.1016/j.neuron.2017.08.023

    [5]

    WOODS B J, VANVACTOR D. miRNA: local guardians of presynaptic function in plasticity and disease. RNA Biol,2021,18(7): 1014–1024. DOI: 10.1080/15476286.2020.1871214

    [6]

    PEGTEL D M, GOULD S J. Exosomes. Annu Rev Biochem,2019,88: 487–514. DOI: 10.1146/annurev-biochem-013118-111902

    [7]

    WEI Z X, XIE G J, MAO X, et al. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology,2020,45(6): 1050–1058. DOI: 10.1038/s41386-020-0622-2

    [8]

    RAN L Y, KONG Y T, XIANG J J, et al. Serum extracellular vesicle microRNA dysregulation and childhood trauma in adolescents with major depressive disorder. Bosn J Basic Med Sci,2022,22(6): 959–971. DOI: 10.17305/bjbms.2022.7110

    [9]

    CHENG L, VELLA L J, BARNHAM K J, et al. SmallRNA fingerprinting of Alzheimer's disease frontal cortex extracellular vesicles and their comparison with peripheral extracellular vesicles. J Extracell Vesicles,2020,9(1): 1766822. DOI: 10.1080/20013078.2020.1766822

    [10]

    PARK C, ROSENBLAT J D, BRIETZKE E, et al. Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev,2019,102: 139–152. DOI: 10.1016/j.neubiorev.2019.04.010

    [11]

    ALLEN L, DWIVEDI Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry,2020,25(2): 308–320. DOI: 10.1038/s41380-019-0597-8

    [12]

    ØSTERGAARD L, JØRGENSEN M B, KNUDSEN G M. Low on energy? an energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev,2018,94: 248–270. DOI: 10.1016/j.neubiorev.2018.08.007

    [13]

    MURPHY-ROYAL C, JOHNSTON A D, BOYCE A K J, et al. Stress gates an astrocytic energy reservoir to impair synaptic plasticity [published correction appears in Nat Commun 2020 Jun 11;11(1): 3064]. Nat Commun,2020,11(1): 2014. DOI: 10.1038/s41467-020-15778-9

    [14]

    WANG W, LIU W, DUAN D, et al. Chronic social defeat stress mouse model: current view on its behavioral deficits and modifications. Behav Neurosci,2021,135(3): 326–335. DOI: 10.1037/bne0000418

    [15]

    BURTSCHER J, NIEDERMEIER M, HÜFNER K, et al. The interplay of hypoxic and mental stress: implications for anxiety and depressive disorders. Neurosci Biobehav Rev,2022,138: 104718. DOI: 10.1016/j.neubiorev.2022.104718

    [16]

    WU F, GAO H, LIU K, et al. The lncRNA ZEB2-AS1 is upregulated in gastric cancer and affects cell proliferation and invasion via miR-143-5p/HIF-1α axis. Onco Targets Ther,2019,12: 657–667. DOI: 10.2147/OTT.S175521

    [17]

    ZENG H, WEI B, LIU J, et al. Hypoxia-inducible factor regulates ten-eleven translocated methylcytosine dioxygenase 1-c-Myc binding involved in depression-like behavior in prenatal hypoxia offspring. Neuroscience,2022,502: 41–51. DOI: 10.1016/j.neuroscience.2022.08.014

    [18]

    WU H, WANG T, LIU Y, et al. Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent axis. J Exp Clin Cancer Res,2020,39(1): 274. DOI: 10.1186/s13046-020-01768-8

    [19]

    LI L, ZUO H, HUANG X, et al. Bone marrow macrophage-derived exosomal miR-143-5p contributes to insulin resistance in hepatocytes by repressing MKP5. Cell Prolif,2021,54(12): e13140. DOI: 10.1111/cpr.13140

    [20]

    LI Y, LI J, YU H, et al. HOXA5-miR-574-5p axis promotes adipogenesis and alleviates insulin resistance. Mol Ther Nucleic Acids,2021,27: 200–210. DOI: 10.1016/j.omtn.2021.08.031

    [21]

    CONFETTURA A D, CUBONI E, AMMAR M R, et al. Neddylation-dependent protein degradation is a nexus between synaptic insulin resistance, neuroinflammation and Alzheimer's disease. Transl Neurodegener,2022,11(1): 2. DOI: 10.1186/s40035-021-00277-8

    [22]

    FERNANDES B S, SALAGRE E, ENDURU N, et al. Insulin resistance in depression: a large meta-analysis of metabolic parameters and variation. Neurosci Biobehav Rev,2022,139: 104758. DOI: 10.1016/j.neubiorev.2022.104758

    [23]

    ABUELEZZ N Z, SHABANA M E, ABDEL-MAGEED H M, et al. Nanocurcumin alleviates insulin resistance and pancreatic deficits in polycystic ovary syndrome rats: insights on PI3K/AkT/mTOR and TNF-α modulations. Life Sci,2020,256: 118003. DOI: 10.1016/j.lfs.2020.118003

    [24]

    GUI S, LIU Y, PU J, et al. Comparative analysis of hippocampal transcriptional features between major depressive disorder patients and animal models. Affect Disord,2021,293: 19–28. DOI: 10.1016/j.jad.2021.06.007

    [25]

    BELLON A, IYER A, BRIDI S, et al. miR-182 regulates Slit2-mediated axon guidance by modulating the local translation of a specific mRNA. Cell Rep,2017,18(5): 1171–1186. DOI: 10.1016/j.celrep.2016.12.093

    [26]

    CARMONA A, CHEN S, DOMART F, et al. Imaging thestructural organization of chemical elements in growth cones of developing hippocampal neurons. Metallomics,2021,14(1): mfab073. DOI: 10.1093/mtomcs/mfab073

    [27]

    YANG C, SUN N, REN Y, et al. Association between AKT1 gene polymorphisms and depressive symptoms in the Chinese Han population with major depressive disorder. Neural Regen Res,2012,7(3): 235–239. DOI: 10.3969/j.issn.1673-5374.2012.03.014

    [28]

    D'ADAMO P, HORVAT A, GURGONE A, et al. Inhibiting glycolysis rescues memory impairment in an intellectual disability Gdi1-null mouse. Metabolism,2021,116: 154463. DOI: 10.1016/j.metabol.2020.154463

    [29]

    RODRÍGUEZ-PALMERO A, BOERRIGTER M M, GÓMEZ-ANDRÉS D, et al. DLG4-related synaptopathy: a new rare brain disorder. Genet Med,2021,23(5): 888–899. DOI: 10.1038/s41436-020-01075-9

    [30]

    CHITRANSHI N, DHEER Y, GUPTA V, et al. PTPN11 induces endoplasmic stress and apoptosis in SH-SY5Y cells. Neuroscience,2017,364: 175–189. DOI: 10.1016/j.neuroscience.2017.09.028

    [31]

    COMPANS B, CAMUS C, KALLERGI E, et al. NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95. Nat Commun,2021,12(1): 2849. DOI: 10.1038/s41467-021-23133-9

  • 期刊类型引用(2)

    1. 叶晓颖,朱雨航,谢锶颖,张嘉颖,袁海怡,余敬伟. miRNA对精神疾病发生发展的调控作用及诊断应用前景. 广东药科大学学报. 2024(04): 149-156 . 百度学术
    2. 董涛,李莹,高耀,刘鹏鸿,刘志芬. 青春期抑郁啮齿类动物模型的建立与评价. 中华行为医学与脑科学杂志. 2024(06): 560-566 . 百度学术

    其他类型引用(0)

图(3)  /  表(2)
计量
  • 文章访问数:  4428
  • HTML全文浏览量:  235
  • PDF下载量:  66
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-12-24
  • 修回日期:  2023-02-26
  • 网络出版日期:  2023-03-19
  • 发布日期:  2023-03-19

目录

/

返回文章
返回