Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION)
Volume 51 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
WANG Tao, WANG Shi-kai, CHEN Guo-qing, et al. A Novel Chemically Defined Medium Enhanced the Osteogenic Potential and Periodontal Bone Regeneration of Dental Papilla Cells[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 735-741. doi: 10.12182/20201160101
Citation: WANG Tao, WANG Shi-kai, CHEN Guo-qing, et al. A Novel Chemically Defined Medium Enhanced the Osteogenic Potential and Periodontal Bone Regeneration of Dental Papilla Cells[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 735-741. doi: 10.12182/20201160101

A Novel Chemically Defined Medium Enhanced the Osteogenic Potential and Periodontal Bone Regeneration of Dental Papilla Cells

doi: 10.12182/20201160101
More Information
  • Corresponding author: E-mail: drtwd@sina.com
  • Received Date: 2020-02-12
  • Rev Recd Date: 2020-05-29
  • Publish Date: 2020-11-20
  •   Obejective   To investigate the role of a novel chemically defined medium (CDM) in the regulation of dental papilla cells (DPCs) functional phenotype in vitro and periodontal bone regeneration in vivo.  Methods  DPCs were isolated and cultured in conventional medium (CM) or CDM. The surface makers, and the proliferation, migration and osteogenic differentiation abilities of DPCs were evaluated. In vivo, the DPCs that mixed with collagen gel were implanted into the model rats in the defect of periodontal to repair the periodontal tissue. Regeneration of the tissues was examined by microcomputed tomography and histological observation.  Results  DPCs in the CM group and CDM group showed similar surface markers. Compared to the CM group, the CDM significantly enhanced the proliferation, colony-forming efficiency and migration of DPCs in vitro. In addition, real time PCR showed that the expression levels of osteogenesis-related genes, Runx2, Alp and Opn. were significantly enhanced in DPCs in the CDM group. DPCs cells treated with CDM also exhibited higher alkaline phosphatase activity and stronger ability of formation of mineralized nodules in vitro. In vivo, DPCs from CDM group significantly enhanced the periodontal bone regeneration and the reconstruction of periodontal bone tissues in rat periodontal defect model.  Conclusion  CDM is a suitable medium to culture DPCs for periodontal bone regeneration. This research provided a substitute for basic research and set the stage for future clinical application of stem cell transplantation.
  • loading
  • [1]
    CARMAGNOLA D, PELLEGRINI G, DELLAVIA C, et al. Tissue engineering in periodontology: biological mediators for periodontal regeneration. Int J Artif Organs,2019,42(5): 241–257. doi: 10.1177/0391398819828558
    [2]
    KINANE D F, STATHOPOULOU P G, PAPAPANOU P N. Periodontal diseases. Nat Rev Dis Primers, 2017, 3: 17038[2020-05-20]. https://www.nature.com/articles/nrdp201738. doi: 10.1038/nrdp.2017.38.
    [3]
    TAN J, ZHANG M, HAI Z, et al. Sustained release of two bioactive factors from supramolecular hydrogel promotes periodontal bone regeneration. ACS Nano,2019,13(5): 5616–5622. doi: 10.1021/acsnano.9b00788
    [4]
    SHANG F, LIU S, MING L, et al. Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect. Theranostics,2017,7(18): 4370–4382. doi: 10.7150/thno.19888
    [5]
    SUBRAMANIAM S, FANG Y H, SIVASUBRAMANIAN S, et al. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration. Biomaterials,2016,74: 99–108. doi: 10.1016/j.biomaterials.2015.09.044
    [6]
    BASSIR S H, WISITRASAMEEWONG W, RAANAN J, et al. Potential for stem cell-based periodontal therapy. J Cell Physiol,2016,231(1): 50–61. doi: 10.1002/jcp.25067
    [7]
    XU X Y, LI X, WANG J, et al. Concise review: periodontal tissue regeneration using stem cells: strategies and translational considerations. Stem Cells Transl Med,2019,8(4): 392–403. doi: 10.1002/sctm.18-0181
    [8]
    CHEN H, FU H, WU X, et al. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a+ stem cells. Sci Adv, 2020, 6(15): eaay1514[2020-05-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141825/. doi: 10.1126/sciadv.aay1514.
    [9]
    TZIAFAS D, KODONAS K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod,2010,36(5): 781–789. doi: 10.1016/j.joen.2010.02.006
    [10]
    YOON H H, MIN J, SHIN N, et al. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease? Neural Regen Res,2013,8(13): 1190–1200.
    [11]
    NERI S, BORZÌ R M. Molecular mechanisms contributing to mesenchymal stromal cell aging. Biomolecules, 2020, 10(2): 340[2020-05-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072652/. doi: 10.3390/biom10020340.
    [12]
    CIMINO M, PARREIRA P, BIDARRA S J, et al. Effect of surface chemistry on hMSC growth under xeno-free conditions. Colloids Surf B Biointerfaces, 2020, 189: 110836[2020-05-20]. https://doi.org/10.1016/j.colsurfb.2020.110836.
    [13]
    KACHROO U, ZACHARIAH S M, THAMBAIAH A, et al. Comparison of human platelet lysate versus fetal bovine serum for expansion of human articular cartilage-derived chondroprogenitors. Cartilage, 2020:1947603520918635[2020-05-20]. https://doi.org/10.1177/1947603520918635.
    [14]
    GUO S, GUO W, DING Y, et al. Comparative study of human dental follicle cell sheets and periodontal ligament cell sheets for periodontal tissue regeneration. Cell Transplant,2013,22(6): 1061–1073. doi: 10.3727/096368912X656036
    [15]
    WANG Y J, ZHAO P, SUI B D, et al. Resveratrol enhances the functionality and improves the regeneration of mesenchymal stem cell aggregates. Exp Mol Med,2018,50(6): 1–15.
    [16]
    YANG X, MA Y, GUO W, et al. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics,2019,9(9): 2694–2711. doi: 10.7150/thno.31801
    [17]
    XU X, GU Z, CHEN X, et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater,2019,86: 235–246. doi: 10.1016/j.actbio.2019.01.001
    [18]
    VENKATAIAH V S, HANDA K, NJUGUNA M M, et al. Periodontal regeneration by allogeneic transplantation of adipose tissue derived multi-lineage progenitor stem cells in vivo. Sci Rep, 2019, 9(1): 921[2020-05-20]. https://www.nature.com/articles/s41598-018-37528-0. doi: 10.1038/s41598-018-37528-0.
    [19]
    IWASAKI K, AKAZAWA K, NAGATA M, et al. The fate of transplanted periodontal ligament stem cells in surgically created periodontal defects in rats. Int J Mol Sci, 2019, 20(1): 192[2020-05-20]. https://doi.org/10.3390/ijms20010192.
    [20]
    CHEN F M, GAO L N, TIAN B M, et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther, 2016, 7: 33[2020-05-20]. https://stemcellres.biomedcentral.com/articles/ 10.1186/s13287-016-0288-1. doi: 10.1186/s13287-016-0288-1.
    [21]
    TOZETTI P A, CARUSO S R, MIZUKAMI A, et al. Expansion strategies for human mesenchymal stromal cells culture under xeno-free conditions. Biotechnol Prog,2017,33(5): 1358–1367. doi: 10.1002/btpr.2494
    [22]
    HUANG G T, GRONTHOS S, SHI S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res,2009,88(9): 792–806. doi: 10.1177/0022034509340867
    [23]
    TURINETTO V, VITALE E, GIACHINO C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci, 2016, 17(7): 1164[2020-05-20]. https://doi.org/10.3390/ijms17071164.
    [24]
    FU X, LIU G, HALIM A, et al. Mesenchymal stem cell migration and tissue repair. Cells, 2019,8(8):784[2020-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721499/.doi: 10.3390/cells8080784.
    [25]
    SEO H, KIM J, HWANG J J, et al. Regulation of root patterns in mammalian teeth. Sci Rep, 2017, 7(1): 12714[2020-05-20]. https://www.nature.com/articles/s41598-017-12745-1. doi: 10.1038/s41598-017-12745-1.
    [26]
    SONOYAMA W, LIU Y, FANG D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 2006, 1(1): e79[2020-05-20]. https://doi.org/10.1371/journal.pone.0000079.
    [27]
    SECIU A M, CRACIUNESCU O, STANCIUC A M, et al. Tailored biomaterials for therapeutic strategies applied in periodontal tissue engineering. Stem Cells Dev,2019,28(15): 963–973. doi: 10.1089/scd.2019.0016
    [28]
    ZHAI Q, DONG Z, WANG W, et al. Dental stem cell and dental tissue regeneration. Front Med,2019,13(2): 152–159. doi: 10.1007/s11684-018-0628-x
    [29]
    AYDIN S, ŞAHIN F. Stem cells derived from dental tissues. Adv Exp Med Biol,2019,1144: 123–132. doi: 10.1007/5584_2018_333
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (1958) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return